КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Методы внутренних штрафных функцийЭти методы применяются для решения задач нелинейного программирования с ограничениями-неравенствами. В рассматриваемых методах функции Ф(x, а) подбирают такими, чтобы их значения неограниченно возрастали при приближении к границе допустимой области G (рис. 7.12). Иными словами, приближение к границе «штрафуется» резким увеличением значения функции F(x, а). На границе G построен «барьер», препятствующий нарушению ограничении в процессе безусловной минимизации F(x, a). Поиск минимума вспомогательной функции F(x, а) необходимо начинать с внутренней точки области G . При этом в процессе оптимизации траектория спуска никогда не выйдет за пределы допустимой области. Все перечисленные особенности функции Ф (х, а) определили наименование рассматриваемой группы методов.
Рис. 7.12 ‑ Внутренняя штрафная функция Таким образом, внутренняя штрафная функция Ф(х, а) может быть определена следующим образом:
Здесь dG -граница области G. Общий вид внутренней штрафной функции где j j - непрерывные дифференцируемые функции, определяемые ограничениями-неравенствами исходной задачи нелинейного программирования. Вспомогательная функция F(x, а) при этом имеет форму Она определена в области G и неограниченно возрастает, если hj(х) -> 0 для некоторого j. В качестве внутренних штрафных функций используют, например, такие: Алгоритм метода внутренних штрафных функций состоит в следующем. В качестве начальной точки х[0] выбирается произвольная внутренняя точка области G. Задается некоторая монотонно убывающая сходящаяся к нулю последовательность {ak}, k |f(x[k]) - f(x[k‑l])| ||x[k] - x[k‑l]|| Здесь e, b - заданные числа, определяющие точность вычислений. Можно показать, что рассмотренный метод внутренних штрафных функций обладает следующими свойствами: 1) 2) 3) Эти свойства справедливы для задач, содержащих непрерывные функции и имеющих локальные минимумы внутри области G.
|