КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Задача 5. Построить развертку пирамидыПостроить развертку пирамиды. Показать на развертке линию пересечения ее с призмой. Исходные данные (призму и пирамиду) для построений взять из задачи 3. Пример выполнения задачи приведен на рисунках 8 и 9. Указания к решению задачи 5.Развертка трехгранной пирамиды состоит из треугольных граней, каждая из которых строиться как треугольник по трем заданным сторонам. Для построения развертки пирамиды необходимо предварительно определить натуральные величины всех ее ребер любым из методов преобразования чертежа (способом вращения, способом замены плоскостей проекций или методом прямоугольного треугольника). На рис.6 показано построение истинного вида отрезка АВ с помощью прямоугольного треугольника, одним катетом которого служит проекция прямой на одной из плоскостей проекций, а другим - разность расстояний конечных точек отрезка до этой плоскости. На эпюре показана проекция А1' В1', которая является натуральной величиной отрезка АВ. Метод вращения можно рассматривать как частный случай плоскопараллельного перемещения, когда все точки пространства и, следовательно, погруженной в него фигуры, перемещаются по дугам окружностей, центры дуг принадлежат одной прямой, называемой осью вращения, а плоскости дуг перпендикулярны к оси. На рис.7 показано построение истинного величины отрезка АВ вращением вокруг оси, перпендикулярной плоскости П1. Если повернуть точку А вокруг оси П1, то ее горизонтальная проекция А1 повернется на такой же угол и займет положение А1', а ее фронтальная проекция будет перемещаться по прямой, перпендикулярной оси вращения. Зная положение горизонтальной проекции А1', строим фронтальную проекцию А2' по линии проекционной связи А1' А2'. При таком вращении положение точки В остается неизменным, а отрезок АВ приведен к положению линии уровня Nbsp; Рис.6. Определение натуральной величины отрезка методом прямоугольного треугольника Рис. 7. Определение натуральной величины отрезка методом вращения.
(фронтали). Таким образом, преобразованная проекция А2' В2' является натуральной величиной отрезка АВ. Определяют последовательно натуральные величины всех ребер пирамиды (кроме ребра CD, которое является горизонталью, поэтому его проекция на плоскость П1есть ни что иное как натуральная величина). На листе ватмана формата A3 (297х 420 мм) строится развертка пирамиды, здесь же выполняются все построения по нахождению натуральных величин ребер пирамиды. На ребрах и на гранях пирамиды (на развертке) определяют вершины пространственной ломаной пересечения пирамиды с призмой. Последовательно соединяют эти точки с учетом их принадлежности отдельным граням пирамиды по описанию в задаче 3. На рис. 4, 5, 8, 9 приведены варианты размещения задач 3, 4, 5 в зависимости от содержания контрольных работ для разных специальностей.
|