КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Рациональный штандорт промышленного предприятия В. ЛаунхардтаГлавное открытие немецкого ученого В. Лаунхардта (W.Launhardt), основная работа которого была опубликована в 1882 г., – метод нахождения пункта оптимального размещения отдельного промышленного предприятия относительно источников сырья и рынков сбыта продукции. Решающим фактором размещения производства у В. Лаунхардта, так же как и у Й.Тюнена, являются транспортные издержки. Производственные затраты принимаются равными для всех точек исследуемой территории. Точка оптимального размещения предприятия находится в зависимости от весовых соотношений перевозимых грузов и расстояний. Для решения этой задачи В. Лаунхардт разработал метод весового (или локационного) треугольника. Рис. 2 Локационный треугольник В. Лаунхардта
Пусть требуется найти пункт размещения нового металлургического завода. Известны пункт добычи железной руды – точка А (рис. 2), пункт добычи угля – точка В и пункт потребления металла – точка С. Транспортный тариф равен t (на 1 т.км). Расход руды на выплавку 1т металла равен а, расход угля – b. Известны также расстояния между пунктами (стороны локационного треугольника): АС = S1; BC=S2; AB=S3. Возможным пунктом размещения металлургического завода может быть в принципе каждая из трех точек размещения источников руды и угля и потребителя металла. В этих случаях суммарные затраты, связанные с перевозкой всех необходимых грузов для потребления 1 т металла, будут равны:
(bS3 + S1)t – при размещении завода в точке А; (aS3 + S2)t – при размещении завода в точке В; (aS1 + bS2)t – при размещении завода в точке С.
Наилучшим пунктом размещения завода из рассмотренных трех будет тот, в котором транспортные затраты минимальны. Однако искомый пункт размещения может не совпадать ни с одной из вершин локационного треугольника, а находиться внутри него в некоторой точке М. Расстояния от внутренней точки M до вершин треугольника составляют: AM = г1, ВМ = г2, СМ = г3.
Тогда транспортные издержки при размещении металлургического завода в точке М будут равны
Т= (ar1+br2+r3)t.
Выполнение требованияТ→min дает точку оптимального местоположения предприятия. Данная задача имеет геометрическое и механическое решения. Геометрический метод нахождения точки размещения состоит в том, что на каждой из сторон локационного треугольника строится треугольник, подобный весовому (стороны которого относятся как а:b:1). Затем вокруг построенных таким образом треугольников описываются окружности, точка пересечения которых и является точкой минимума транспортных издержек. Этот метод – для случая, когда соотношения расстояний S1, S2, S3 соответствуют свойству треугольника (одна сторона меньше суммы двух других). В противном случае (например, когда S1>S2+S3) точка минимума транспортных затрат будет совпадать с одной из вершин локационного треугольника. Механическое решение рассматриваемой задачи основывается на аналогии с методом нахождения точки равновесия сил. При этом веса руды, угля, металла выступают в качестве сил, с которыми притягивают производство соответствующие вершины локационного треугольника. Искомая точка является точкой равновесия трех связанных нитей, проходящих через вершины локационного треугольника. При этом к концам нитей подвешены грузы (Qa, Qb, Qc), пропорциональные а, b, 1. Весовой треугольник В. Лаунхардта – одна из первых в экономической науке физических моделей, используемых для решения теоретических и практических задач. Изложенный метод нахождения оптимального размещения предприятия применим и для большего числа точек (видов сырья) при условии, что они образуют выпуклый многоугольник.
|