КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Природа магнетизмаСтр 1 из 4Следующая ⇒ ГЛАВА 1
ФИЗИЧЕСКОЕ ОБОСНОВАНИЕ МАГНИТНЫХ ИЗМЕРЕНИЙ
Природа магнетизма Явление магнетизма было открыто еще в древности как поле постоянных магнитов. Долгое время магнетизм, как особая форма материи, объяснялся моделью Кулона, представляющей совокупность зарядов двух знаков. И до сих пор это открытие находит применение в научных теоретических исследованиях и разработке выводов. После открытия Эрстедом магнитного поля токов и последующих исследований ряда других физиков была установлена полная эквивалентность свойств магнитных полей токов и магнитов. По теореме Ампера, магнитное поле замкнутого постоянного тока можно рассматривать как поле диполя, состоящего из магнитных зарядов положительного и отрицательного знаков. Ампером была высказана мысль о появлении при наличии магнитов электрических молекулярных токов, которые создают магнитное поле. Но это не свободные макроскопические токи, а микроскопические связанные токи, циркулирующие в пределах отдельных молекул вещества. Предположение Ампера в дальнейшем получило подтверждение. Всякое вещество в природе является магнетиком, оно способно под действием магнитного поля намагничиваться и приобретать собственный магнитный момент. Магнетиками называются вещества, которые при внесении их во внешнее поле изменяются так, что сами становятся источниками дополнительного магнитного поля. Намагниченное вещество создает магнитное поле В1, которое накладывается на первичное поле Во. Оба поля в сумме дают результирующее поле
В = Во + В1. (1.1) Намагничивание тел Ампер объясняет циркулированием в молекулах вещества круговых токов (молекулярных токов). Токи обладают магнитными моментами, которые создают в окружающем пространстве магнитное поле. В отсутствие внешнего поля молекулярные токи ориентированы беспорядочно, вследствие чего обусловленное ими результирующее поле равно нулю. Суммарный магнитный момент тела в этом случае равен нулю. Под действием внешнего магнитного поля магнитные моменты молекул приобретают преимущественную ориентацию в одном направлении, вследствие чего магнетик намагничивается и его суммарный момент становится отличным от нуля. Магнитные поля отдельных молекулярных токов уже не компенсируют друг друга, и возникает поле В1. Это явление открыто экспериментально Фарадеем в 1845 г. Магнитные свойства молекулы приобретают за счет магнитных свойств составляющих их атомов. Известно, что атом состоит из положительного ядра, окруженного отрицательными электронами. Движущийся электрон по орбите вокруг ядра с постоянной скоростью эквивалентен замкнутому контуру орбитального тока J: J = e¦,
где e – абсолютная величина заряда электрона, ¦ – частота его обращения по орбите. Орбитальный магнитный момент Рm электрона равен Рm = J S n,
где S – площадь орбиты, n – единичный вектор нормали к плоскости орбиты. Геометрическую сумму орбитальных магнитных моментов всех электронов атома называют орбитальным магнитным моментом μ атома. Кроме того, известно, что электрон еще обладает собственным моментом импульса, который ничего общего не имеет с его движением по орбите. Он ведет себя так, как будто постоянно вращается вокруг собственной оси. Это свойство называется спином электрона. Модуль спина электрона зависит от постоянной Планка h: .
С этим внутренним моментом количества движения связан магнитный момент неизменной величины. Направление этого магнитного момента совпадает с направлением, ожидаемым для электрона, если его представить в виде отрицательно заряженного шара, вращающегося вокруг оси. Величина спинового магнитного момента всегда одинакова, внешнее поле может повлиять только на его направление. Если спиновые моменты электрона могут свободно ориентироваться в веществе, то можно ожидать, что они легко расположатся в направлении приложенного поля В, т.е. сами выберут ориентацию энергии. Можно считать, что магнитные свойства вещества зависят от приложенного индуцированного поля. В состав ядер атомов различных элементов входят еще и протоны. Их количество в ядре соответствует порядковому номеру элемента в периодической системе Д.И.Менделеева. Протон обладает положительным электрическим зарядом, численно равным заряду электрона. Масса протона в 1836.5 раза превышает массу электрона. В классической модели протон представляется как масса, несущая положительный заряд и вращающаяся вокруг собственной оси. Протон представляется в виде элементарной вращающейся массы, обладающей моментом импульса за счет вращения вокруг собственной оси. Вращение протона, несущего электрический заряд, создает кольцевой ток, который, в свою очередь, обуславливает магнитный момент, называемый собственным магнитным моментом, или спиновым магнитным моментом протона. Движение элементарных частиц атома вещества в магнитном поле создает суммарный магнитный эффект, который является количественной характеристикой намагниченного состояния вещества. Эта векторная величина называется намагниченностью, она равна отношению магнитного момента макроскопически малого объема вещества υ к величине этого объема:
J = , (1.2)
где – магнитный момент атома, содержащийся в объеме υ. Другими словами, намагниченность есть объемная плотность магнитного момента магнетика. Вещество, в котором содержится равномерно распределенное во всем объеме большое количество одинаково направленных атомных магнитных диполей, называется равномерно намагниченным. Вектор намагниченности J является произведением числа ориентированных диполей в единице объема и магнитного момента μ каждого диполя.
Рис. 1.1. Магнитное поле вокруг намагниченного цилиндра
Рассмотрим опытные исследования. Магнитное поле около намагниченного стержня, например стрелки компаса, очень похоже на электрическое поле электрически поляризованного стержня, который имеет избыток положительных зарядов на одном конце и избыток отрицательных зарядов – на другом. Получаем, что и магнитное поле имеет свои источники, которые связаны с ним таким же образом, как электрический заряд связан с электрическим полем. Один магнитный заряд можно назвать северным полюсом, а другой – южным. На рис. 1.1 демонстрируется магнитное поле вокруг намагниченного цилиндра, видимое благодаря ориентации мелких кусочков никелевой проволоки, погруженных в глицерин. Исследования выполнены в физической лаборатории Пальмера Принстонского университета (Э. Парселл) /21/. Опыт показывает, что не удалось получить избытка изолированных магнитных зарядов одного знака, а наоборот, подтверждает, что заряды существуют в паре и между ними есть связь. Исследователи утверждают, что обычное вещество «сделано» из электрических зарядов, а не из магнитных. Можно сделать вывод, что источником магнитного поля являются электрические токи. Это подтверждает мысль Ампера о том, что магнетизм можно объяснить существованием множества крошечных колец электрического тока, распределенных по всему веществу.
|