![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
МарганецВ поверхностные воды марганец поступает в результате выщелачивания железомарганцевых руд и других минералов, содержащих марганец (пиролюзит, псиломелан, браунит, манганит, черная охра). Значительные количества марганца поступают в процессе разложения водных животных и растительных организмов, особенно сине-зеленых, диатомовых водорослей и высших водных растений. Соединения марганца выносятся в водоемы со сточными водами марганцевых обогатительных фабрик, металлургических заводов, предприятий химической промышленности и с шахтными водами. Понижение концентрации ионов марганца в природных водах происходит в результате окисленияMn(II) доMnO2 и других высоковалентных оксидов, выпадающих в осадок. Основные параметры, определяющие реакцию окисления, - концентрация растворенного кислорода, величинарН и температура. Концентрация растворенных соединений марганца понижается вследствие утилизации их водорослями. Главная форма миграции соединений марганца в поверхностных водах - взвеси, состав которых определяется в свою очередь составом пород, дренируемых водами, а также коллоидные гидроксиды тяжелых металлов и сорбированные соединения марганца. Существенное значение в миграции марганца в растворенной и коллоидной формах имеют органические вещества и процессы комплексообразования марганца с неорганическими и органическими лигандами.Mn(II) образует растворимые комплексы с бикарбонатами и сульфатами. Комплексы марганца с ионом хлора встречаются редко. Комплексные соединенияMn(II) с органическими веществами (аминами, органическими кислотами, аминокислотами и гумусовыми веществами) обычно менее прочны, чем аналогичные соединения с другими переходными металлами.Mn(III) в повышенных концентрациях может находиться в растворенном состоянии только в присутствии сильных комплексообразователей,Mn(VII) в природных водах не встречается. В речных водах содержание марганца колеблется обычно от 1 до 160 мкг/дм3, среднее содержание в морских водах составляет 2 мкг/дм3, в подземных -n·102-n·103 мкг/дм3. Концентрация марганца в поверхностных водах подвержена сезонным колебаниям. Факторами, определяющими изменения концентраций марганца, являются соотношение между поверхностным и подземным стоком, интенсивность потребления его при фотосинтезе, разложение фитопланктона, микроорганизмов и высшей водной растительности, а также процессы осаждения его на дно водных объектов. Роль марганца в жизни высших растений и водорослей водоемов весьма велика. Марганец способствует утилизацииCO2 растениями, чем повышает интенсивность фотосинтеза, участвует в процессах восстановления нитратов и ассимиляции азота растениями. Марганец способствует переходу активногоFe(II) вFe(III), что предохраняет клетку от отравления, ускоряет рост организмов и т.д. Важная экологическая и физиологическая роль марганца вызывает необходимость изучения марганца и его распределения в природных водах. Для марганца ПДКв (по иону марганца) установлена 0,1 мг/дм3 (лимитирующий показатель вредности - органолептический), ПДКвр - 0,01 мг/дм3 (лимитирующий показатель вредности - токсикологический). Ртуть В поверхностные воды соединения ртути могут поступать в результате выщелачивания пород в районе ртутных месторождений (киноварь, метациннабарит, ливингстонит), в процессе разложения водных организмов, накапливающих ртуть. Значительные количества поступают в водные объекты со сточными водами электролизных производств, предприятий, производящих красители, пестициды, фармацевтические препараты, некоторые взрывчатые вещества. Тепловые электростанции, работающие на угле, выбрасывают в атмосферу значительные количества соединений ртути, которые в результате мокрых и сухих выпадений попадают в водные объекты. Понижение концентрации растворенных соединений ртути происходит в результате извлечения их многими морскими и пресноводными организмами, обладающими способностью накапливать ее в концентрациях, во много раз превышающих содержание ее в воде, а также в результате процессов адсорбции взвешенными веществами и донными отложениями. В поверхностных водах соединения ртути находятся в растворенном и взвешенном состоянии. Соотношение между ними зависит от химического состава воды и значенийрН. Взвешенная ртуть представляет собой сорбированные соединения ртути. Растворенными формами являются недиссоциированные молекулы, комплексные органические и минеральные соединения. В воде водных объектов ртуть может находиться в виде метилртутных соединений. Содержание ртути в речных незагрязненных и слабозагрязненных водах составляет несколько десятых долей микрограмма в 1 дм3, средняя концентрация в морской воде 0,03 мкг/дм3, в подземных водах 1-3 мкг/дм3. Соединения ртути высоко токсичны, они поражают нервную систему человека, вызывают изменение слизистой оболочки, нарушение двигательной функции и секреции желудочно-кишечного тракта, изменения в крови и др. Бактериальные процессы метилирования направлены на образование метилртутных соединений, которые во много раз токсичнее минеральных солей ртути. Метилртутные соединения накапливаются в пищевых цепях (например, фитопланктон-зоопланктон-рыба) и могут попадать в организм человека. ПДКв ртути составляет 0,0005 мг/дм3 (лимитирующий показатель вредности - санитарно-токсикологический), ПДКвр - 0,0001 мг/дм3 (лимитирующий показатель вредности - токсикологический). Углеводороды (нефтепродукты) Нефтепродукты относятся к числу наиболее распространенных и опасных веществ, загрязняющих поверхностные воды. Нефть и продукты ее переработки представляют собой чрезвычайно сложную, непостоянную и разнообразную смесь веществ (низко- и высокомолекулярные предельные, непредельные алифатические, нафтеновые, ароматические углеводороды, кислородные, азотистые, сернистые соединения, а также ненасыщенные гетероциклические соединения типа смол, асфальтенов, ангидридов, асфальтеновых кислот). Понятие "нефтепродукты" в гидрохимии условно ограничивается только углеводородной фракцией (алифатические, ароматические, алициклические углеводороды). Большие количества нефтепродуктов поступают в поверхностные воды при перевозке нефти водным путем, со сточными водами предприятий нефтедобывающей, нефтеперерабатывающей, химической, металлургической и других отраслей промышленности, с хозяйственно-бытовыми водами. Некоторые количества углеводородов поступают в воду в результате прижизненных выделений растительными и животными организмами, а также в результате их посмертного разложения. В результате протекающих в водоеме процессов испарения, сорбции, биохимического и химического окисления концентрация нефтепродуктов может существенно снижаться, при этом значительным изменениям может подвергаться их химический состав. Наиболее устойчивы ароматические углеводороды, наименее - н-алканы. Нефтепродукты находятся в различных миграционных формах: растворенной, эмульгированной, сорбированной на твердых частицах взвесей и донных отложений, в виде пленки на поверхности воды. Обычно в момент поступления масса нефтепродуктов сосредоточена в пленке. По мере удаления от источника загрязнения происходит перераспределение между основными формами миграции, направленное в сторону повышения доли растворенных, эмульгированных, сорбированных нефтепродуктов. Количественное соотношение этих форм определяется комплексом факторов, важнейшими из которых являются условия поступления нефтепродуктов в водный объект, расстояние от места сброса, скорость течения и перемешивания водных масс, характер и степень загрязненности природных вод, а также состав нефтепродуктов, их вязкость, растворимость, плотность, температура кипения компонентов. При санитарно-химическом контроле определяют, как правило, сумму растворенных, эмульгированных и сорбированных форм нефти. Содержание нефтепродуктов в речных, озерных, морских, подземных водах и атмосферных осадках колеблется в довольно широких пределах и обычно составляет сотые и десятые доли мг/дм3. В незагрязненных нефтепродуктами водных объектах концентрация естественных углеводородов может колебаться в морских водах от 0,01 до 0,10 мг/дм3 и выше, в речных и озерных водах от 0,01 до 0,20 мг/дм3, иногда достигая 1-1,5 мг/дм3. Содержание естественных углеводородов определяется трофическим статусом водоема и в значительной мере зависит от биологической ситуации в водоеме. Неблагоприятное воздействие нефтепродуктов сказывается различными способами на организме человека, животном мире, водной растительности, физическом, химическом и биологическом состоянии водоема. Входящие в состав нефтепродуктов низкомолекулярные алифатические, нафтеновые и особенно ароматические углеводороды оказывают токсическое и, в некоторой степени, наркотическое воздействие на организм, поражая сердечно-сосудистую и нервную системы. Наибольшую опасность представляют полициклические конденсированные углеводороды типа 3,4-бензапирена, обладающие канцерогенными свойствами. Нефтепродукты обволакивают оперение птиц, поверхность тела и органы других гидробионтов, вызывая заболевания и гибель. Отрицательное влияние нефтепродуктов, особенно в концентрациях 0,001-10 мг/дм3, и присутствие их в виде пленки сказывается и на развитии высшей водной растительности и микрофитов. В присутствии нефтепродуктов вода приобретает специфический вкус и запах, изменяется ее цвет,рН, ухудшается газообмен с атмосферой. ПДКв нефтепродуктов составляет 0,3 мг/дм3 (лимитирующий показатель вредности - органолептический), ПДКвр - 0,05 мг/дм3 (лимитирующий показатель вредности - рыбохозяйственный). Присутствие канцерогенных углеводородов в воде недопустимо. Синтетические поверхностно-активные вещества (СПАВ) СПАВ представляют собой обширную группу соединений, различных по своей структуре, относящихся к разным классам. Эти вещества способны адсорбироваться на поверхности раздела фаз и понижать вследствие этого поверхностную энергию (поверхностное натяжение). В зависимости от свойств, проявляемых СПАВ при растворении в воде, их делят на анионоактивные вещества (активной частью является анион), катионоактивные (активной частью молекул является катион), амфолитные и неионогенные, которые совсем не ионизируются. Анионоактивные СПАВ в водном растворе ионизируются с образованием отрицательно заряженных органических ионов. Из анионоактивных СПАВ широкое применение нашли соли сернокислых эфиров (сульфаты) и соли сульфокислот (сульфонаты). Радикал R может быть алкильным, алкиларильным, алкилнафтильным, иметь двойные связи и функциональные группы. Катионоактивные СПАВ — вещества, которые ионизируются в водном растворе с образованием положительно заряженных органических ионов. К ним относятся четвертичные аммониевые соли, состоящие из: углеводородного радикала с прямой цепью, содержащей 12-18 атомов углерода; метильного, этильного или бензильного радикала; хлора, брома, иода или остатка метил- или этилсульфата. Амфолитные СПАВ ионизируются в водном растворе различным образом в зависимости от условий среды: в кислом растворе проявляют катионоактивные свойства, а в щелочном — анионоактивные. Неионогенные СПАВ представляют собой высокомолекулярные соединения, которые в водном растворе не образуют ионов. В водные объекты СПАВ поступают в значительных количествах с хозяйственно-бытовыми (использование синтетических моющих средств в быту) и промышленными сточными водами (текстильная, нефтяная, химическая промышленность, производство синтетических каучуков), а также со стоком с сельскохозяйственных угодий (в качестве эмульгаторов входят в состав инсектицидов, фунгицидов, гербицидов и дефолиантов). Главными факторами понижения их концентрации являются процессы биохимического окисления, сорбция взвешенными веществами и донными отложениями. Степень биохимического окисления СПАВ зависит от их химического строения и условий окружающей среды. По биохимической устойчивости, определяемой структурой молекул, СПАВ делят на мягкие, промежуточные и жесткие с константами скорости биохимического окисления, соответственно не менее 0,3 сутки-1; 0,3-0,05 сутки-1; менее 0,05 сутки-1. К числу наиболее легко окисляющихся СПАВ относятся первичные и вторичные алкилсульфаты нормального строения. С увеличением разветвления цепи скорость окисления понижается, и наиболее трудно разрушаются алкилбензолсульфонаты, приготовленные на основе тетрамеров пропилена. При понижении температуры скорость окисления СПАВ уменьшается и при 0-5°С протекает весьма медленно. Наиболее благоприятные для процесса самоочищения от СПАВ нейтральная или слабощелочная среды (рН7-9). С повышением содержания взвешенных веществ и значительным контактом водной массы с донными отложениями скорость снижения концентрации СПАВ в воде обычно повышается за счет сорбции и соосаждения. При значительном накоплении СПАВ в донных отложениях в аэробных условиях происходит окисление микрофлорой донного ила. В случае анаэробных условий СПАВ могут накапливаться в донных отложениях и становиться источником вторичного загрязнения водоема. Максимальные количества кислорода (БПК), потребляемые 1 мг/дм3 различных ПАВ колеблется от 0 до 1,6 мг/дм3. При биохимическом окислении СПАВ, образуются различные промежуточные продукты распада: спирты, альдегиды, органические кислоты и др. В результате распада СПАВ, содержащих бензольное кольцо, образуются фенолы. В поверхностных водах СПАВ находятся в растворенном и сорбированном состоянии, а также в поверхностной пленке воды водного объекта.
Попадая в водоемы и водотоки, СПАВ оказывают значительное влияние на их физико-биологическое состояние, ухудшая кислородный режим и органолептические свойства, и сохраняются там долгое время, так как разлагаются очень медленно. Отрицательным, с гигиенической точки зрения, свойством ПАВ является их высокая пенообразующая способность. Хотя СПАВ не являются высокотоксичными веществами, имеются сведения о косвенном их воздействии на гидробионтов. При концентрациях 5-15 мг/дм3 рыбы теряют слизистый покров, при более высоких концентрациях может наблюдаться кровотечение жабр.
Неионогенные поверхностно-активные вещества (НПАВ) Токсическое действие НПАВ определяется главным образом неполярной частью молекулы, при этом оно более выражено при наличии в последней ароматического кольца.
Самоочищение водоема — это совокупность всех природных процессов, направленных на восстановление первоначальных свойств и состава воды
Самоочищение водоема — это совокупность всех природных процессов, направленных на восстановление первоначальных свойств
Основная роль в процессе самоочищения принадлежит биологическому фактору. Процесс деструкции органических загрязнений осуществляется всем сообществом гидробионтов, образующих трофическую цепь Рыбы, моллюски, ракообразные и другие гидробионты Трофическая цепь самоочищения водоема Попавшее в водоем загрязнение вовлекается в комплекс физических, физико-химических, химических и биологических процессов трансформации. Прежде всего попавшие в водоем загряз нения подвергаются разбавлению (рассеиванию), часть из (например, нефтяные битумы) оседает на дно водоема (оседание загрязнений на дно водоема происходит с участием гидробионтов седиментаторов и фильтраторов), другая часть всплывает виде пленки или пены. Некоторые всплывшие загрязнения испаряются с поверхности водоема (летучая органика), другие подвергают ся разложению ультрафиолетовыми лучами. Важнейшим фактор самоочищения является гидролиз, в результате которого пocтупившие в водоем загрязнения подвергаются глубоким изменениям. Например, при гидролизе аммонийных солей, с образованием гидрата окиси аммония наблюдается снижение его концентрации в связи летучестью аммиака. Главную роль в процессах самоочищения играют микроорганизмы, и прежде всего бактерии. Все бактерии водоема делятся на две группы: автохтонные — присущие данному водоему, и аллохтонные — попавшие в него извне. В случае благоприятных условий среды аллохтонные бактерии приживаются в водоеме, но чаще всего постепенно отмирают, что также является благоприятным фактором, поскольку многие из них относятся к патогенным. Современные исследователи выделяют три биологических фактора самоочищения водоема от патогенных микроорганизмов: антибиотический (антибиотические вещества фитопланктона, макрофитов, зоогидробионтов, микробов-антагонистов); паразитический (лизирующее действие бактериофагов, т.е. растворение или разрушение микробной клетки) и бактериотрофный (бактерио-трофная активность — поедание бактерий Protozoa и Metaioa). Первым трофическим уровнем, окисляющим органические загрязнения, являются бактерии; вторым — инфузории, поедающие бактерии; третьим — зоопланктон, питающийся инфузориями и бактериями. Рыбы и другие гидробионты поедают зоопланктон,водоросли и некоторые высшие водные растения. По данным А.С. Константинова, на Волгоградском водохранилище без учета дыхания водорослей и микрозообентоса за вегетационный период суммарная минерализация составляет 1590 г/м2 сухого органического вещества. Из этого количества 42% минерализуется бактери-опланктоном, 40% — бактериобентосом, 10% — планктонными инфузориями, 5% — моллюсками, 1,5% — ветвистоусыми рачками и менее 15% — остальными группами зоопланктонов. Водоросли также способны непосредственно усваивать простые органические соединения, а также соединения азота и фосфора, что интенсифицирует процесс самоочищения водоема. Кроме того, водоросли способствуют насыщению воды кислородом. Однако чрезмерное развитие водорослей может привести к вторичному загрязнению водоема после их отмирания. Для водоемов характерно развитие диатомовых водорослей, зеленых одноклеточных (Chlorella, Scenedesmus, Ankistrodesmus). Водоросли могут вызывать и так называемое цветение водоема, характерное для непроточных водоемов озер, прудов, водохранилищ. «Цветение» — явление сезонное и может быть вызвано различными водорослями. В начале весны наблюдается «цветение» диатомовыми водорослями (Asterionella, Synedra, Melosim), при этом вода приобретает желтовато-коричневый цвет; в середине лета часто наблюдается «цветение» сине-зелеными водорослями (Anabaena, Oscillatoria), придающее воде голубовато-зеленый цвет, неприятный привкус и запах. Большую роль в процессе самоочищения водоемов играет высшая водная растительность— макрофиты, которые не только изымают биогенные элементы, соли тяжелых металлов, фенолы, нефтепродукты и другие загрязнения, но и снабжают водоем кислородом за счет фотосинтетического аэрирования. В местах развития высшей водной растительности практически не наблюдается «цветение» водоема, что объясняется изъятием основных биогенных элементов. Например, тростник обыкновенный, при урожае 44 т/га по сухому веществу может изъять из воды 667 кг/га азота, 276 кг/га фосфора, 419 кг/га калия, 408 кг/га соединений хлора и 198 кг/га кальция. Рогоз узколистный изымает меньше азота, фосфора и соединений хлора, но кальция и особенно натрия он изымает в 2—3 раза больше, чем тростник. Отмечена избирательная способность высших водных растений к изъятию отдельных химических элементов и их соединений, что используется в последнее время для создания биологических прудов с высшей водной растительностью. Кроме того, стебли мак-рофитов, находящиеся в воде, подвержены биообрастаниям, состоящим из микроорганизмов-минерализаторов, что также вносит значительный вклад в процессы самоочищения водоема.
|