Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Энергетическая система




Энергетическая система(энергосистема, общеэнергетическая система) - объединенная система энергетики, совокупность энергетических ресурсов всех видов, методов их получения (добычи), преобразования, распределения и использования, а также технических средств и организационных комплексов, обеспечивающих снабжение потребителей всеми видами энергии. Энергосистемы называют иногда большими системами энергетики; они имеют иерархическую структуру, уровнями которой являются страна (государство), район, крупный промышленный, транспортный или сельскохозяйственный узел, отдельное предприятие. Уровню страны обычно соответствуют единые энергетические системы; уровню нескольких районов - объединенные энергетические системы; уровню одного района - районные энергосистемы, уровню объекта, не связанного с другими системами, - автономные энергосистемы (например, предприятия, корабля, самолета).

В энергосистему в качестве составляющих ее подсистем входят: электроэнергетические системы (состоящие из электрических систем и сетей теплоснабжения), системы нефте- и газоснабжения, системы угольной промышленности, системы ядерной энергетики. Объединение отдельных энергоснабжающих систем в единую систему, иногда также называемую межотраслевым топливно-энергетическим комплексом, связано, прежде всего с взаимозаменяемостью различных видов энергии и энергоресурсов.

Значение топливно-энергетического комплекса для хозяйства страны заключается главным образом в том, что на его основе, в зависимости от его состояния, формируются основные хозяйственные пропорции страны; на его развитие передовые в промышленном отношении страны затрачивают около 30% всех капиталовложений, причем в этом комплексе оказывается занято 15-20% всех работников. Развитие и функционирование энергосистемы тесно связаны с созданием новой экономичной энергетической техники, с влиянием энергетики на социальные и политические процессы как внутри страны, так и в международных отношениях, на размещение промышленности и населения по стране, с влиянием энергетики на окружающую среду.

Рассматривая энергосистему с точки зрения обеспечения хозяйства страны всеми видами энергии, иногда вводят весьма близкое к понятию энергосистема понятие «энергетическое хозяйство», под которым понимают комплекс взаимосвязанных подсистем, содержащих энергетические объекты и объединенных для обеспечения потребителей всеми видами энергии. В некотором смысле термин «энергетическое хозяйство» может считаться адекватным термину «топливно-энергетический комплекс».

В энергосистеме должен существовать энергетический баланс, который является статической характеристикой энергетического хозяйства, основные элементы и связи которого составляют энергосистемы.

Основная специфика свойств энергосистемы проявляется в следующем:

1. совокупность больших систем энергетики существует как единое материальное целое, причем целостность их обусловлена внутренними связями и взаимозаменяемостью продукции, подсистем и отдельных элементов;

2. универсальность и большая хозяйственная значимость производимой энергосистемой продукции, особенно электроэнергии и жидкого топлива, и следовательно, многочисленность внешних связей системы;

3. активное влияние энергосистем на развитие и размещение производств как на территории отдельного района, так и страны в целом;

4. неразрывность во времени большинства процессов производства и потребления энергии, и следовательно, органичное включение потребителей энергии и топлива в структуру системы: особая важность управления режимами систем и оперативным топливоснабжением для обеспечения бесперебойной подачи энергии потребителю;

5. невозможность изолированного выбора производительности и параметров отдельных элементов и связей вне их предполагаемого использования в системе; отсюда особая важность перспективного проектирования больших систем энергетики как единого целого;

6. сложность структуры энергосистем, обусловленная тем, что энергосистемы формируются как единые системы страны и даже группы смежных стран.

Характерная особенность энергосистем заключается в том, что их физико-технические и экономические свойства тесно связаны между собой; например, усовершенствование энергетического оборудования в направлении повышения его кпд или улучшения его эксплуатационных характеристик приводит в конечном счете к снижению себестоимости вырабатываемой энергии.

Развитие энергетики как глобальной системы проявляется, прежде всего, в плане социальном. Разрыв в культурном и экономическом уровне разных стран в значительной мере обусловлен разницей в обеспечении их энергией, энерговооруженностью. Так, например, на долю населения, проживающего в развивающихся странах, приходится не более 7% мирового потребления всех видов энергии.

Управление энергосистемой сводится к целенаправленному оптимизируемому воздействию на большую систему энергетики с помощью автоматизированных систем. Управление энергосистемой имеет целью достижение в данном промежутке времени таких показателей ее работы, которые наиболее близко подходили бы к принятым критериям эффективности. В процессе управления достигается состояние энергосистемы, при котором управляющие воздействия, осуществляемые целенаправленно в определенной зависимости от внешних условий, обеспечивают достижение поставленной цели. Управление энергосистемой включает: оптимизацию решении, т. е. определение наилучшего плана системы; реализацию этих решений, т. е. осуществление этого плана в конкретных условиях. Первое часто называют оптимизацией развития, а второе - оптимизацией функционирования. Эффективность управления энергосистемой в основном обеспечивается достижением оптимальных темпов и пропорций в развитии единого топливно-энергетического комплекса и входящих в него энергетических подсистем; применением новой техники, которая могла бы обеспечить научно-технический прогресс в энергетике и своевременное развитие энергетической техники; наиболее рациональным (при сложившихся условиях) использованием всех материальных и трудовых ресурсов страны.

Работа энергосистемы может быть охарактеризована степенью использования запасов энергетических ресурсов. Конечным результатом функционирования энергосистемы является полезная энергия, т. е. та, которая после переработки, преобразования, транспортирования и хранения ресурсов поступает к потребителям и обеспечивает полезные энергетические процессы.

Большие системы энергетики и их теория стали развиваться в основном во 2-й половине 20 в. Начало 60-х гг. характеризовалось качественно новым направлением развития советской энергетики, заключавшимся в концентрации энергетических мощностей, формированием объединённых электроэнергетических систем, созданием электроэнергетической системы «Мир», объединившей Единую электроэнергетическую систему Европейской части Советского Союза с энергосистемами стран - членов СЭВ.

Мероприятия, направленные на снижение неблагоприятного влияния энергосистем на окружающую среду, предусматриваются как органическая часть любого энергетического сооружения ещё на стадии его проектирования, а не как некие дополнительные установки к уже построенному энергетическому комплексу. Это необходимо, прежде всего, в связи с ростом мощностей энергетических объектов.

 

Что будете делать, если Вас застала гроза в чистом поле  
 

 

 
При первых признаках приближающейся грозы надо: как можно быстрее переместиться в сторону надежного ближайшего укрытия (лес, деревня), удаляясь одновременно от отдельно стоящих деревьев или рощ. Если отдельно стоящее дерево расположено на вашем пути к деревне, плюньте на деревню. Тут приоритетной задачей будет все-таки отдаление от возможных зон попадания разряда. Отдаляться надо не менее чем на 150-200 м. С началом грозы, если вы так и не добежали до укрытия: присесть как можно ниже, желательно в овраге, а когда гроза подойдет совсем близко — лечь на землю. И тихо, смиренно, неподвижно лежать. При этом следует помнить, что песчаная и каменная почвы безопаснее, чем глинистая. И не спешите двигаться с места, когда гроза начнет уходить, — переждите 20-30 минут после того, как ударила последняя молния. Нельзя: перемещаться, в особенности гордо и бестрепетно; прятаться в стога сена, под одиноко стоящие деревья или островки деревьев, тем более прикасаться к ним руками и прочими частями тела. Наиболее часто молнии попадают в отдельностоящие и выступающие предметы, поэтому нельзя укрываться в грозу возле одиноко стоящих деревьев, столбов и др. высоких местных предметов (геодезические знаки, пирамиды, вершина открытого холма), надо отойти на 15 метров. В деревья разных пород молнии попадают с различной частотой: Клен и береза - 0 Акация - 1 Липа - 2 Бук - 3 Сосна - 6 Ель - 10 Тополь - 24 Дуб - 54 Опасно находиться в воде или поблизости от нее. Палатку ставить у самой воды нельзя, так молнии часто ударяют в речные берега. Грозы постоянно гремят над землей, летом чаще, зимой почти никогда. Хотя по статистике, гибель от удара молнии случается очень редко, никогда не следует недооценивать эту опасность. В горах грозы возникают чаще, чем на равнинах. Если гроза застала вас на открытом месте, например в поле, найдите яму, овраг или любое другое углубление и спрячьтесь в нем. Попробуйте добежать до края леса или лесополосы и укройтесь там: молния очень редко ударяет в кустарник. Ни в коем случае не прячьтесь под одинокими деревьями, высокими конструкциями. Они "притягивают" молнию. Если гроза застала вас в автомобиле, не выходите из него. Закройте все двери и окна и переждите ненастье внутри. Находясь во время грозы в загородном доме, отключите из сети электроприборы, а телевизор - от индивидуальной антенны.

 

Оба закона Кирхгофа формулируются достаточно просто и имеют понятную физическую интерпретацию. Первый закон гласит, что если рассмотреть любой узел цепи (то есть точку разветвления, где сходятся три или более проводов), то сумма поступающих в цепь электрических токов будет равна сумме исходящих, что, вообще говоря, является следствием закона сохранения электрического заряда. Например, если вы имеете Т-образный узел электрической цепи и по двум проводам к нему поступают электрические токи, то по третьему проводу ток потечет в направлении от этого узла, и равен он будет сумме двух поступающих токов. Физический смысл этого закона прост: если бы он не выполнялся, в узле непрерывно накапливался бы электрический заряд, а этого никогда не происходит.

Второй закон не менее прост. Если мы имеем сложную, разветвленную цепь, ее можно мысленно разбить на ряд простых замкнутых контуров. Ток в цепи может различным образом распределяться по этим контурам, и сложнее всего определить, по какому именно маршруту потекут токи в сложной цепи. В каждом из контуров электроны могут либо приобретать дополнительную энергию (например, от батареи), либо терять ее (например, на сопротивлении или ином элементе). Второй закон Кирхгофа гласит, что чистое приращение энергии электронов в любом замкнутом контуре цепи равно нулю. Этот закон также имеет простую физическую интерпретацию. Если бы это было не так, всякий раз, проходя через замкнутый контур, электроны приобретали или теряли бы энергию, и ток бы непрерывно возрастал или убывал. В первом случае можно было бы получить вечный двигатель, а это запрещено первым началом термодинамики; во втором — любые токи в электрических цепях неизбежно затухали бы, а этого мы не наблюдаем.

Самое распространенное применение законов Кирхгофа мы наблюдаем в так называемых последовательных и параллельных цепях. В последовательной цепи (яркий пример такой цепи — елочная гирлянда, состоящая из последовательно соединенных между собой лампочек) электроны от источника питания по серии проводов последовательно проходят через все лампочки, и на сопротивлении каждой из них напряжение падает согласно закону Ома.

В параллельной цепи провода, напротив, соединены таким образом, что на каждый элемент цепи подается равное напряжение от источника питания, а это означает, что в каждом элементе цепи сила тока своя, в зависимости от его сопротивления. Пример параллельной цепи является — ламп «лесенкой»: напряжение подается на шины, а лампы смонтированы на поперечинах. Токи, проходящие через каждый узел такой цепи, определяются по второму закону Кирхгофа.

 


Поделиться:

Дата добавления: 2015-04-15; просмотров: 661; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты