Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


ЛОГИКА И ЯЗЫК




Предметом изучения логики являются формы и законы пра­вильного мышления. Мышление есть функция человеческого мо­зга. Труд способствовал выделению человека из среды животных,

явился фундаментом в возникновении у людей сознания (в том числе мышления) и языка. Мышление неразрывно связано с язы­ком. Язык, по выражению К. Маркса, есть непосредственная действительность мысли. В ходе коллективной трудовой деятель­ности у людей возникла потребность в общении и передаче своих мыслей друг другу, без чего была невозможна сама организация коллективных трудовых процессов.

Функции естественного языка многочисленны и многогранны. Язык — средство повседневного общения людей, средство обще­ния в научной и практической деятельности. Язык позволяет передавать и получать накопленные знания, практические умения и жизненный опыт от одного поколения к другому, осуществлять процесс обучения и воспитания подрастающего поколения. Язы­ку свойственны и такие функции: хранить информацию, быть средством выражения эмоций, быть средством познания.

Язык является знаковой информационной системой, продук­том духовной деятельности человека. Накопленная информация передается с помощью знаков (слов) языка.

Речь может быть устной или письменной, звуковой или незву­ковой (как, например, у глухонемых), речью внешней (для дру­гих) или внутренней, речью, выраженной с помощью естествен­ного или искусственного языка. С помощью научного языка, в основе которого лежит естественный язык, сформулированы положения философии, истории, географии, археологии, геоло­гии, медицины (использующей наряду с «живыми» националь­ными языками и ныне «мертвый» латинский язык) и многих других наук.

Язык — это не только средство общения, но и важнейшая составная часть культуры всякого народа.

На базе естественных языков возникли искусственные языки науки. К ним принадлежат языки математики, символической логики, химии, физики, а также алгоритмические языки програм­мирования для ЭВМ, которые получили широкое применение в современных вычислительных машинах и системах. Языками программирования называются знаковые системы, применяемые для описания процессов решения задач на ЭВМ. В настоящее время усиливается тенденция разработки принципов «общения» человека с ЭВМ на естественном языке, чтобы можно было пользоваться компьютерами без посредников—программистов.

Знак — это материальный предмет (явление, событие), высту­пающий в качестве представителя некоторого другого предмета, свойства или отношения и используемый для приобретения, хра­нения, переработки и передачи сообщений (информации, знаний).

Знаки подразделяются на языковые и неязыковые. К неязыко­вым знакам относятся знаки-копии (например, фотографии, от­печатки пальцев, репродукции и др.), знаки-признаки, или знаки-показатели (например, дым — признак огня, повышенная температура тела — признак болезни), знаки-сигналы (например, звонок — знак начала или окончания занятия), знаки-символы (например, дорожные знаки) и другие виды знаков. Существует особая наука — семиотика, которая является общей теорией зна­ков. Разновидностями знаков являются языковые знаки. Одна из важнейших функции языковых знаков состоит в обозначении ими предметов. Для обозначения предметов служат имена.

Имя — это слово или словосочетание, обозначающее какой-либо определенный предмет. (Слова «обозначение», «именова­ние», «название» рассматриваются как синонимы.) Предмет здесь понимается в весьма широком смысле: это вещи, свойства, отношения, процессы, явления и т. п. как природы, так и обще­ственной жизни, психической деятельности людей, продуктов их воображения и результатов абстрактного мышления. Итак, имя всегда есть имя некоторого предмета. Хотя предметы изменчивы, текучи, в них сохраняется качественная определенность, которую и обозначает имя данного предмета.

Имена делятся на: 1) простые («книга», «снегирь», «опера») и сложные, или описательные («самый большой водопад в Кана­де и США», «планета Солнечной системы»). В простом имени нет частей, имеющих самостоятельный смысл, в сложном они име­ются;

2) собственные, т. е. имена отдельных людей, предметов, со­бытий («П. И. Чайковский», «Обь»), и общие (названия класса однородных предметов), например «дом», «действующий вул­кан».

Каждое имя имеет значение и смысл. Значением имени являет­ся обозначаемый им предмет8.

Смысл (или концепт) имени — это способ, каким имя обозна­чает предмет, т. е. информация о предмете, которая содержится в имени. Поясним это на примерах. Один и тот же предмет может иметь множество разных имен (синонимов). Так, напри­мер, знаковые выражения «4», «2+2», «9—5» являются именами одного и того же предмета: числа 4. Разные выражения, обозна­чающие один и тот же предмет, имеют одно и то же значение, но разный смысл (т. е. смысл выражений «4», «2+2» и «9 — 5» раз­личен).

Приведем другие примеры, разъясняющие, что такое значение и смысл имени. Такие знаковые выражения, как «великий русский поэт Александр Сергеевич Пушкин (1799—1837)», «автор романа в стихах «Евгений Онегин», «автор стихотворения, обращенного к Анне Петровне Керн, «Я помню чудное мгновенье», «поэт, смертельно раненный на дуэли с Ж. Дантесом», «автор истори­ческой работы «История Пугачева» (1834)», имеют одно и то же значение (они обозначают поэта А. С. Пушкина), но различный смысл.

Такие языковые выражения, как «самое глубокое озеро мира»,

«пресноводное озеро в Восточной Сибири на высоте около 455 метров», «озеро, имеющее свыше 300 притоков и единственный исток — реку Ангару», «озеро, глубина которого 1620 метров», имеют одно и то же значение (озеро Байкал), но различный смысл, поскольку эти языковые выражения представляют озеро Байкал с помощью различных его свойств, т. е. дают различную информацию о Байкале.

Соотношение трех понятий: «имя», «значение», «смысл» — схематически можно изобразить таким образом (рис. 1).

Эта схема пригодна, если имя является не только собствен­ным, т. е. приложимым к одному предмету (число 4, А. С. Пуш­кин, Байкал), но и общим (например, «человек», «озеро»). Тогда вместо единичного предмета значением имени будет класс одно­родных предметов (например, класс озер или класс собак и т. д.) и схема останется в силе при данном уточнении, при этом вместо смысла будет содержание понятия.

В логике различают выражения, которые являются именными функциями, и выражения, являющиеся пропозициональными фу­нкциями. Примерами первых являются «х2+1», «отец у», «раз­ность чисел z и 5»; примерами вторых являются: «х — поэт», «7+у=10», « х >у—7». Рассмотрим эти два вида функций.

Именная функция — это выражение, которое при замене пере­менных постоянными превращается в обозначение предмета. Возьмем именную функцию «отец у». Подставив вместо у имя «писатель Жюль Верн», получим «отец писателя Жюля Вер­на» — имя предмета (в данном случае имя человека).

Именная функция — это такое выражение, которое не являет­ся непосредственно именем ни для какого предмета и нуждается в некотором восполнении для того, чтобы стать именем пред­мета. Так, выражение х2 — 1 не обозначает никакого предмета, но если мы его «восполним», подставив, например, на место х имя числа 3 (обозначающее это число цифру), то получим выражение З2 — 1, которое является уже именем для числа 8, т. е. для некото­рого предмета. Аналогично выражение х2 + у2 не обозначает никакого предмета, но при подстановке на место х и у каких-нибудь имен чисел, например «4» и «1», превращается в имя числа 17. Такие нуждающиеся в восполнении выражения, как х21, х2 + у2, и называют функциями: первая — от одного, вто­рая — от двух аргументов.

Пропозициональной функцией называется выражение, содержа­щее переменную и превращающееся в истинное или ложное высказывание при подстановке вместо переменной имени пред­мета из определенной предметной области.

Приведем примеры пропозициональных функций: «z — го­род»; «х есть космонавт»; «у— четное число»; «х + у = 10»; «х3-1 = 124».

Пропозициональные функции делятся на одноместные, содер­жащие одну переменную, называемые свойствами (например, «х — композитор», «х—7 = 3», «z — гвоздика»), и содержащие две и более переменных, называемые отношениями (например, «х > у»; «х—z = 16»; «объем куба х равен объему куба у »).

Возьмем в качестве примера пропозициональную функцию «х — нечетное число» и, подставив вместо х число 4, получим высказывание: «4 — нечетное число», которое ложно, а подставив число 5, получим истинное высказывание: «5 — нечетное число».

Разъясним это на некоторых конкретных примерах. Необ­ходимо указать, какие из приведенных выражений являются именными функциями и какие пропозициональными; определить их местность, т. е. число входящих в выражение переменных, и получить из них имена или предложения, выражающие сужде­ния (истинные или ложные):

а) «разность чисел 100 и х». Это именная одноместная функ­ция; например, 100 — 6 есть имя предмета, имя числа 94;

б) «х2+у». Это именная двухместная функция; при подста­новке вместо х числа 5 и вместо у числа 7 превращается в имя предмета, имя числа 32;

в) «у — известный полководец». Это пропозициональная од­номестная функция; при подстановке вместо у имени «Александр Васильевич Суворов, родившийся 24 ноября 1730 г.» получим истинное суждение: «Александр Васильевич Суворов, родивший­ся 24 ноября 1730 г., — известный полководец», выраженное в форме повествовательного предложения;

г) «z является композитором, написавшим оперы х и у». Это пропозициональная трехместная функция; превращается в лож­ное суждение при подстановке вместо z имени «Бизе», вместо х — «Аида», а вместо у — «Травиата», т. е. суждение «Визе яв­ляется композитором, написавшим оперы «Аида» и «Травиата», выраженное в форме повествовательного предложения.

Понятие пропозициональной функции широко используется в математике. Все уравнения с одним неизвестным, которые школьники решают начиная с первого класса, представляют со­бой одноместные пропозициональные функции, например х+2=7, 10—х = 4. Неравенства, содержащие одну или несколько переменных, также являются пропозициональными функциями. Например, х<7 или х2—у>0.


Поделиться:

Дата добавления: 2014-11-13; просмотров: 200; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты