КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Понятие правила выводаУмозаключение дает истинное заключение, если исходные посылки истинны и соблюдены правила вывода. Правила вывода или правила преобразования суждений позволяют переходить от посылок (суждений) определенного вида к заключениям также определенного вида. Например, если в качестве посылок даны два суждения, представимые в виде формулы и формулы «о», то можно перейти к суждению вида «b». Это можно путем преобразований по правилу в виде формулы записать так: Данная формула является законом логики. Логически правильно можно рассуждать о вопросах, относящихся к любым предметам. Логические ошибки также могут быть обнаружены в рассуждениях любого предметного содержания. Из этого не следует, разумеется, что в любых условиях и к любой предметной области должен быть применим один и тот же аппарат формально-логических правил. Сам этот аппарат должен развиваться вместе с развитием науки и практической деятельности людей. Одна из характерных черт логики состоит в том, что логика позволяет, получив некоторую информацию, знания об обстоятельствах дела, извлечь из них — точнее говоря, выявить — содержащиеся в их совокупности новые знания. Так, наблюдая движение Луны и Солнца и делая логические выводы из этих наблюдений (включая и индуктивные обобщения), люди еще в античной древности умели логически выводить из них достаточно точные предсказания о наступлении солнечных и лунных затмений. Другая характерная черта логики, органически связанная с предыдущей, состоит в том, что всякий логический вывод из посылок предполагает некоторую формализацию, т. е. может быть осуществлен по каким-нибудь общим правилам, относящимся к способам выражения знаний и способам переработки этих выражений: способам образования и преобразования выражений. В зависимости от средств, которыми мы располагаем, таких способов формализации может быть много, начиная с того, что одно и то же знание мы можем выразить на разных языках. Но какой-нибудь из языков (под «языком» не обязательно понимать звуковую речь) нам необходимо употребить. Без языка, без материального способа выражения мысли невозможно и само мышление. Формализация способов вывода состоит прежде всего в том, что каждый шаг вывода совершается только в соответствии с каким-нибудь из заранее перечисленных правил вывода, относящихся только к способам оперирования с формальными выражениями мысли с помощью материальных знаков. Среди последних имеются специфически логические, так называемые логические константы (постоянные). В математической логике — это конъюнкция, дизъюнкция, отрицание, импликация, эквиваленция, кванторы общности и существования и др. Различают правила прямого вывода и правила непрямого (косвенного) вывода. Правила прямого вывода позволяют из имеющихся истинных посылок получить истинное заключение. Правила непрямого (косвенного) вывода позволяют заключать о правомерности некоторых выводов из правомерности других выводов (эти правила будут проанализированы в § 10 настоящей главы). Типы дедуктивных умозаключений (выводов) такие: выводы, зависящие от субъектно-предикатной структуры суждений; выводы, основанные на логических связях между суждениями (выводы логики высказываний). Эти типы выводов и предстоит нам рассмотреть. Рассмотрим выводы, основанные на субъектно-предикатной структуре суждений. К формам, типичным в практике рассуждений, относятся следующие выводы из категорических суждений: 1) выводы посредством преобразования суждений; 2) категорический силлогизм, сокращенный силлогизм (энтимема), сложные (полисиллогизмы) и сложносокращенные силлогизмы (сориты и эпихейрема).
|