Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Емкость




Читайте также:
  1. В) фондоемкость;
  2. Внутренняя энергия и количество теплоты. Теплоемкость.
  3. Демографическая емкость территории
  4. Диффузионная емкость
  5. Емкость
  6. Емкость
  7. Емкость в цепи синусоидального тока
  8. Емкость пустот пород. Пористость.
  9. Емкость рынка

Все проводники с электрическим зарядом создают электрическое поле. Характеристикой этого поля является разность потенциалов (напряжение). Электрическую емкость определяют отношением заряда проводника к напряжению

C = Q / UC.

С учетом соотношения

i = dQ / dt

получаем формулу связи тока с напряжением

i = C · duC / dt.

Для удобства ее интегрируют и получают

(2.12)

uC = 1 / C · ∫ i dt.

Это соотношение является аналогом закона Ома для емкости.

Конструктивно емкость выполняется в виде двух проводников разделенных слоем диэлектрика. Форма проводников может быть плоской, трубчатой, шарообразной и др.

Единицей измерения емкости является фарада:

1Ф = 1Кл / 1В = 1Кулон / 1Вольт.

Оказалось, что фарада является большой единицей, например, емкость земного шара равна ≈ 0,7 Ф. Поэтому чаще всего используют дробные значения

1 пФ = 10–12 Ф, (пФ – пикофарада);
1 нФ = 10–9 Ф, (нФ – нанофарада);
1 мкФ = 10–6 Ф, (мкФ – микрофарада).

Условным обозначением емкости является символ

Основные свойства простейших цепей переменного тока

Простейшие цепи – цепи, содержащие один элемент.

Участок цепи, содержащий активное сопротивление (рис. 2.6).


Рис. 2.6

Зададимся изменением тока в резисторе по синусоидальному закону

i(t) = ImR sin(ωt + ψi).

Воспользуемся законом Ома для мгновенных значений тока и напряжения

u(t) = R i(t)

и получим

(2.13)

u(t) = R ImR sin(ωt + ψi).

Формальная запись синусоидального напряжения имеет вид

(2.14)

u(t) = UmR sin(ωt + ψu)

Соотношения (2.13) и (2.14) будут равны если будут выполнены условия равенства амплитуд и фаз

(2.15)

UmR = R ImR,

(2.16)

ψu = ψi.

Соотношение (2.15) может быть записано для действующих значений

(2.17)

UR = R IR.

Соотношение (2.16) показывает, что фазы напряжения и тока в резисторе совпадают. Графически это представлено на временной диаграмме (рис. 2.7) и на комплексной плоскости (рис. 2.8).


Рис. 2.7 и 2.8

Участок цепи, содержащий идеальную индуктивность (рис 2.9)


Рис. 2.9

Зададим изменение тока в индуктивности по синусоидальному закону

i(t) = ImL sin(ωt + ψi).



Используем уравнение связи между током и напряжением в индуктивности

uL = L · di / dt

и получим

uL(t) = ωL · ImL cos(ωt + ψi).

Заменим cos на sin и получим

(2.18)

uL(t) = ωL · ImL sin(ωt + ψi + 90°).

Формальная запись синусоидального напряжения имеет вид

(2.19)

uL(t) = UmL sin(ωt + ψu).

Соотношения (2.18) и (2.19) будут равны если выполняется условие равенства амплитуд и фаз

(2.20)

UmL = ωL · ImL,

(2.21)

ψu = ψi + 90°.

Уравнение (2.20) можно переписать для действующих значений

(2.22)

UL = ωL · IL.

Уравнение (2.21) показывает, что фаза тока в индуктивности отстает от фазы напряжения на 90°. Величину XL = ωL в уравнении (2.20) называют индуктивным сопротивлением. Единицей его измерения является Ом. Графически электрические процессы в индуктивности представлены на рис. 2.10, 2.11.

Рис. 2.10 и 2.11

3. Участок цепи, содержащий ёмкость (рис. 2.12)


Рис. 2.12

Зададим изменение тока в емкости по синусоидальному закону

i(t) = ImC sin(ωt + ψi).

Используем уравнением связи между током и напряжением в емкости

uC = 1 / C · ∫ i dt,



и получим

uC = 1 / (ωC) · ImC (-cos(ωt + ψi)).

Заменим –cos на sin

(2.23)

uC = 1 / (ωC) · ImC sin(ωt + ψi - 90°).

Формальная запись синусоидального напряжения имеет вид

(2.24)

uC = UmC sin(ωt + ψu).

Соотношения (2.23) и (2.24) будут равны если выполняется условие равенства амплитуд и фаз

(2.25)

UmC = 1 / (ωC) · ImC,

(2.26)

ψu = ψi - 90°.

Уравнение (2.25) можно переписать для действующих значений

(2.27)

UC = 1 / (ωC) · IC.

Уравнение (2.26) показывает, что фаза напряжения в емкости отстает от фазы тока на 90°. Величину XC = 1 / (ωC) в уравнении (2.25) называют емкостным сопротивлением цепи и измеряют его в Омах. Графически электрические процессы в емкости представлены на рис. 2.13, 2.14.


Рис. 2.13 и 2.14


Дата добавления: 2015-04-16; просмотров: 9; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.013 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты