КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Полупроводниковые приборы ⇐ ПредыдущаяСтр 3 из 3 Это электронные приборы, действие которых основано на электронных процессах в полупроводниках. Основой полупроводниковых приборов являются электронно-дырочные переходы – область на границе между полупроводниками с р – и n – проводимостью. Служат для генерирования, усиления и преобразования электрических колебаний (полупроводниковый диод, транзистор,тиристор), преобразования сигналов одного вида в другой (оптрон, фоторезистор, фотодиод, фототранзистор и др.), одних видов энергии в другие (термоэлемент, термоэлектрический генератор, солнечная батарея и др.), а также для преобразования изображений, измерения электрических величин (магнитоэлектрические приборы, напр. измерительный преобразователь) и механических величин (пьезоэлектрические и тензометрические приборы, реагирующие на давление или механическое смещение) и др. Особый класс полупроводниковых приборов – полупроводниковые интегральные схемы, представляющие собой законченные электронные устройства в виде единого блока (пластинки) из кремния, германия и других элементов, на котором методами полупроводниковой технологии образованы зоны, выполняющие функции активных и пассивных элементов (диодов, транзисторов, резисторов, конденсаторов и т. д.). Достоинствами полупроводниковых приборов по сравнению с электронными лампами являются малые габаритные размеры, масса, потребляемая электрическая мощность и высокая надёжность, а недостатком – низкая радиационная стойкость. Устройство терморезисторов. Для изготовления терморезисторов применяются полупроводниковые материалы, являющиеся смесью оксидов некоторых металлов — титана, магния, никеля, лития, марганца, кобальта. Полупроводниковое вещество помещается в металлический защитный чехол, в котором имеются изолированные выводы для включения терморезистора в электрическую цепь. Некоторые терморезисторы не имеют специальной защитной оболочки, полупроводниковый материал в них лишь покрыт слоем лака. Изменение сопротивления терморезисторов при нагревании или охлаждении позволяет использовать их в приборах для измерения температуры, для поддержания постоянной температуры в автоматических устройствах — в закрытых камерах-термостатах. Фоторезисторы. Опыты показывают, что электрическое сопротивление полупроводниковых кристаллов изменяется не только при их нагревании, но и при освещении. При увеличении освещения электрическое сопротивление полупроводниковых материалов уменьшается. Это означает, что энергия, необходимая для освобождения электронов и дырок, может быть передана им светом, падающим на кристалл. Приборы, в которых используется свойство полупроводниковых кристаллов изменять свое электрическое сопротивление при освещении светом, называются фоторезисторами. Фоторезисторы изготавливаются в виде тонких слоев полупроводникового вещества, нанесенных на подложку изолятора. Материалами для изготовления фоторезисторов служат соединения типа CdS, CdSe, PbS и ряд других. Свойства p-n - перехода. Полупроводниковые приборы являются основой современной электронной техники. Они применяются в радиоприемниках и телевизорах, микрокалькуляторах и электронных вычислительных машинах. Принцип действия большинства полупроводниковых приборов основан на использовании свойств p-n - перехода. Диффузия электронов из n-полупроводника в р-полупроводник приводит к появлению в электронном проводнике нескомпенсированных положительных ионов донорной примеси, в дырочном полупроводнике рекомбинация электронов с дырками приводит к появлению нескомпенсированных зарядов отрицательных ионов акцепторной примеси (рис. 158, б). Между двумя слоями объемного заряда возникает электрическое поле. По мере накопления объемного заряда напряженность поля возрастает, и оно оказывает все большее противодействие переходам электронов из n-полупроводника в р-полупроводник или дырок из р-полупроводника в n-полупроводник. Электронно-дырочный переход, или сокращенно p-n - переход, является границей, разделяющей области с дырочной (р) и электронной (n) проводимостями в одном монокристалле. Транзистор. Транзистор, или полупроводниковый триод, был изобретен в 1948 г. По способу изготовления транзистор очень мало отличается от полупроводникового диода. Транзисторы, в которых эмиттер и коллектор обладают дырочной проводимостью, а база — электронной, называются транзисторами p-n-p - перехода. Включение транзистора в электрическую цепь. Для приведения в действие на коллектор транзистора типа p-n-p подают напряжение отрицательной полярности относительно эмиттера. Напряжение на базе может быть как положительным, так и отрицательным по отношению к эмиттеру. Iэ = Iк + Iб .(46.1) Соотношение между токами коллектора и базы транзистора в активном состоянии определяется условиями диффузии и рекомбинации дырок в базе. Эти условия сильно зависят от типов использованных для изготовления транзисторов материалов и конструкции их электродов, но очень слабо зависят от коллекторного и базового напряжений. Поэтому транзистор можно рассматривать как устройство, распределяющее ток, протекающий через один из его электродов — эмиттер, в заданном соотношении между двумя другими электродами — базой и коллектором (рис. 161). Усилительные свойства транзистора. Способность транзистора распределять ток эмиттера в заданном соотношении между коллектором и базой может быть использована для усиления электрических сигналов. Отношение изменения силы тока в цепи коллектора к изменению тока в цепи базы при постоянном напряжении на коллекторе для каждого транзистора есть величина постоянная, называемая интегральным коэффициентом передачи базового тока : .(46.2) Для транзисторов различных типов значение этого коэффициента лежит в пределах от 15—20 до 200—500. Следовательно, вызывая каким-то способом изменения тока в цепи базы транзистора, можно получить в десятки и даже в сотни раз большие изменения тока в цепи коллектора. .(46.3) При включении транзистора по схеме, представленной на рисунке 162 (схема с общим эмиттером), отношение изменения тока коллектора к изменению тока базы является отношением изменения выходного тока к изменению входного тока . Это отношение называется коэффициентом усиления по току : .(46.4) Так как параметр у транзистора может иметь значения от ~20 до ~500, электрическая схема с использованием одного транзистора может усиливать электрические сигналы по току в десятки и даже сотни раз. .(46.5) Отношение этого изменения напряжения на выходе транзистора к вызвавшему его изменению напряжения на входе называется коэффициентом усиления каскада по напряжению : .(46.6) Входное сопротивление транзистора, включенного по схеме с общим эмиттером, обычно составляет несколько сотен ом. Коэффициент усиления транзисторного каскада по напряжению при условии может превышать значение коэффициента усиления по току . Казанский Национальный Исследовательский Технологический Университет
Самостоятельная работа студента
Работу выполнила Студентка гр. 4111-12 Гимадиева Гулия Проверил Варнакова Т.Ф.
Казань 2013
|