![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Синтаксическая мера информации. Эта мера количества информации оперирует с обезличенной информацией, не выражающей смыслового отношения к объекту.Эта мера количества информации оперирует с обезличенной информацией, не выражающей смыслового отношения к объекту. Объем данных Vд. в сообщении измеряется количеством символов (разрядов) в этом сообщении. В различных системах счисления один разряд имеет различный вес и соответственно меняется единица измерения данных: в двоичной системе счисления единица измерения - бит (bit - binary digit - двоичный разряд); Примечание. В современных ЭВМ наряду с минимальной единицей измерения данных "бит" широко используется укрупненная единица измерения "байт", равная 8 бит. в десятичной системе счисления единица измерения -дит (десятичный разряд). Пример 2.3. Сообщение в двоичной системе в виде восьмиразрядного двоичного кода 10111011 имеет объем данных Vд=8 бит. Сообщение в десятичной системе в виде шестиразрядного числа 275903 имеет объем данных Vд=6 дит. Количество информации - на синтаксическом уровне невозможно определить без рассмотрения понятия неопределенности состояния системы (энтропии системы). Действительно, получение информации о какой-либо системе всегда связано с изменением степени неосведомленности получателя о состоянии этой системы. Рассмотрим это понятие. Пусть до получения информации потребитель имеет некоторые предварительные (априорные) сведения о системе a. Мерой его неосведомленности о системе является функция H(a), которая в то же время служит и мерой неопределенности состояния системы. После получения некоторого сообщения b получатель приобрел некоторую дополнительную информацию Ib(a), уменьшившую его априорную неосведомленность так, что апостериорная (после получения сообщения b) неопределенность состояния системы стала Hb(a). Тогда количество информации Ib(a) о системе, полученной в сообщении b, определится как Ib(a)=H(a)-Hb(a), т.е. количество информации измеряется изменением (уменьшением) неопределенности состояния системы. Если конечная неопределенность Hb(a) обратится в нуль, то первоначальное неполное знание заменится полным знанием и количество информации Ib(a)=H(a). Иными словами, энтропия системы H(a) может рассматриваться как мера недостающей информации. Энтропия системы H(a), имеющая N возможных состояний, согласно формуле Шеннона, равна: где Рi - вероятность того, что система находится в i-м состоянии. Для случая, когда все состояния системы равновероятны, т.е. их вероятности равны Pi=1/N, ее энтропия определяется соотношением Часто информация кодируется числовыми кодами в той или иной системе счисления, особенно это актуально при представлении информации в компьютере. Естественно, что одно и то же количество разрядов в разных системах счисления может передать разное число состояний отображаемого объекта, что можно представить в виде соотношения N=mn, где N -число всевозможных отображаемых состояний; т - основание системы счисления (разнообразие символов, применяемых в алфавите); п - число разрядов (символов) в сообщении. Пример 2.4. Но каналу связи передается n-разрядное сообщение, использующее т различных символов. Так как количество всевозможных кодовых комбинаций будет N=mn, то при равновероятности появления любой из них количество информации, приобретенной абонентом в результате получения сообщения, будет I=logN=logm - формула Хартли. Если в качестве основания логарифма принять т, то I=n. В данном случае количество информации (при условии полного априорного незнания абонентом содержания сообщения) будет равно объему данных I=Vд, полученных по каналу связи. Для неравновероятных состояний системы всегда I<Vд=n. Наиболее часто используются двоичные и десятичные логарифмы. Единицами измерения в этих случаях будут соответственно бит и дит. Коэффициент (степень) информативности (лаконичность) сообщения определяется отношением количества информации к объему данных, т.е. С увеличением Y уменьшаются объемы работы по преобразованию информации (данных) в системе. Поэтому стремятся к повышению информативности, для чего разрабатываются специальные методы оптимального кодирования информации.
|