Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Феррорезонансные стабилизаторы напряжения

Читайте также:
  1. Активная, реактивная и полная мощности в цепях с несинусоидальными периодическими напряжениями и токами.
  2. Билет 18.Предохранители, стабилизаторы.
  3. Величина порогового напряжения и пути ее регулирования
  4. Влияние времени воздействия напряжения
  5. Влияние времени приложения напряжения на электрическую прочность газовой изоляции (вольт-секундная характеристика — ВСХ)
  6. Внутренние перенапряжения
  7. Вопрос 15. Неразветвлённая цепь с переменным сопротивлением нагрузки. Зависимость напряжения, тока и КПД цепи от сопротивления нагрузки.
  8. Вопрос 17. Режимы работы источника напряжения. Определение потенциалов точек цепи и их расчёт. Построение потенциальной диаграммы.
  9. Вопрос 3. Источники напряжения и тока (определение, условно графическое обозначение, взаимное преобразование). Примеры источников напряжения и тока.
  10. Вопрос 3. Источники напряжения и тока (определение, условно графическое обозначение, взаимное преобразование). Примеры источников напряжения и тока.

В параметрических стабилизаторах используют различные схемные включения линейных и нелинейных элементов.

Простейший стабилизатор напряжения состоит из последователь­ного соединения линейного Zл и нелинейного Zнл сопротивлений, вольт-амперная характеристика которого имеет участок Zнл »const. Такую характеристику имеют варисторы U(I), дроссели насыщения Z(I), нелинейные конденсаторы Z(I) и др. Выходное напряжение Uст снимается в схеме с не­линейного элемента. Эффект стабилизации определяется тем, что DUn >>DUст.

 

 

Параметрические стабилизаторы на активных сопротивлениях имеют слишком малый к.п.д. вследствие активных потерь в линейном и не­линейном элементах и поэтому применяются лишь для небольших мощ­ностей - до нескольких ватт.

В цепях переменного тока более высоких мощностей применяют­ся параметрические стабилизаторы на реактивных сопротивлениях: в качестве линейного элемента Zл используют обычно нена­сыщенный дроссель L1, а нелинейного Zнл - насыщенный L2. Нагрузка подключается параллельно нелинейному элементу.


 

Последовательное соединение линейного и нелинейного дроссе­лей образует простейший ферромагнитный стабилизатор. Ему присущи следующие недостатки: малое значение коэффициента стабилизации KU (единицы), неси­нусоидальная форма кривой выходного напряжения, малый диапазон стабилизации, низкий КПД, вследствие чего подобная схема при­менения не нашла.

Можно существенно повысить значение коэффициента стабилиза­ции KU и расширить диапазон входного напряжения упомянутого стаби­лизатора, если уменьшить величину DUст путём введения в схему дополнительного компенсирующего напряжения Uк. Существуют два основных метода компенсации: напряжением, пропорциональным напряжению на линейном дросселе или напряжением, пропорциональным напряжению сети. Компенсирующее напряжение необходимо потому, что одним только выбором материала сердечника насыщенного дросселя довести DUст до нуля не удается из-за конечной крутизны кривой намагничивания на участке насыщения. Поэтому создают последовательный или парал­лельный феррорезонансный контур. КПД схемы можно существенно повысить (до 0,7 - 0,8), если параллельно нелинейному дросселю подключить вспомогательную ли­нейную емкость С. Оба указанных способа применяются в современных феррорезонансных стабилизаторах. Наиболее эффективным является стабилизатор с феррорезонансом токов.




 

 

Рисунок10.3Феррорезонансные стабилизаторы напряжения

 

Построим результирующую ВАХ нелинейного контура, который настроен в резонанс при Uсети ном. Поэтому ток, потребляемый контуром в точке А:

Рисунок 10.4 Зависимости между напряжением и током в индуктивности , емкости и нагрузке

 

При малых напряжениях индуктивность дросселя велика, ток мал и результирующий ток имеет ёмкостный характер. В т. А. (резонанс) и при дальнейшем повышении напряжения I имеет индуктивный характер и резко увеличивается, что соответствует уменьшению индуктивности. При этом напряжение на контуре изменяется меньше чем на отдельном дросселе насыщения: стабильность выходного напряжения U2 значительно больше.

Феррорезонансные стабилизаторы просты, надёжны, КПД достигает 85%, стойки к электрическим и механическим перегрузкам, работают в широком диапазоне температур. Выходные мощности - от 100вт до 10квт. Коэффициент стабилизации по напряжению КU=15…30.



Недостатки: чувствительны к изменению частоты. Так, при выходное напряжение изменяется на ! Имеют существенную массу и объём, несинусоидальность напряжения .

Контрольные вопросы:

1 Как работает параллельный компенсационный стабилизатор непрерывного действия при увеличении (уменьшении) тока нагрузки или входного напряжения?

2 Какие существуют способы повышения качества стабилизации в компенсационных стабилизаторах непрерывного действия?

3 Каковы достоинства и недостатки импульсных стабилизаторов?

4 Каков принцип работы импульсных стабилизаторов напряжения?

5 В чем сущность методов ШИР И ЧИР?

7 Задание. Выбрать величину индуктивности дросселя величину напряжения и его пульсацию на выходе импульсного стабилизатора напряжения для следующих исходных данных:

to= 0,5 мкс, T= 1мкс, Е=30В, I0=1А, Rн = 10 Ом, щр = 2 Ом, С=50мкФ.

 

11 Инверторы напряжения

 

11.1 Принцип инвертирования напряжения

 

Для построения схемы инвертора напряжения воспользуемся принципом дуальности. Инвертор является устройством, противоположным выпрямителю, т.к. он преобразует напряжение постоянного тока в разнополярное напряжение прямоугольной или синусоидальной формы. Поменяем местами источник с нагрузкой в схеме выпрямителя и получим схему инвертора напряжения:


 

Рисунок 11.1 Схема инвертора напряжения

 

Для формирования двухполярного напряжения необходимо определенным образом управлять ключевыми элементами. Обеспечить стабилизацию (регулирование) напряжения на выходе инвертора можно изменением длительности импульсов управления ключами в зависимости от дестабилизирующих факторов.



Дата добавления: 2014-11-13; просмотров: 37; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Стабилизаторы напряжения со ступенчатым регулированием | Транзисторный инвертор с насыщающимся трансформатором
lektsii.com - Лекции.Ком - 2014-2020 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты