Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Максвелл ввел понятие полного тока,равного сумме токов проводимости (а также конвекционных токов) и смещения.Плотность полного тока 25 страница




В настоящее время методы наблюдения и регистрации заряженных частиц и излуче­ний настолько разнообразны, что их описание выходит за рамки курса.

Большое значение начинают играть сравнительно новые (1957) приборы — ис­кровые камеры, использующие преимущества счетчиков (быстрота регистрации) и тре­ковых детекторов (полнота информации о треках). Говоря образно, искровая каме­ра — это набор большого числа очень мелких счетчиков. Поэтому она близка к счет­чикам, так как информация в ней выдается немедленно, без последующей обработки, и в то же время обладает свойствами трекового детектора, так как по действию многих счетчиков можно установить треки частиц.

§ 262. Ядерные реакции и их основные типы

Ядерные реакции — это превращения атомных ядер при взаимодействии с элементар­ными частицами (в том числе и с g-квантами) или друг с другом. Наиболее распрост­раненным видом ядерной реакции является реакция, записываемая символически сле­дующим образом:

где Х и Y — исходное и конечное ядра, а и b — бомбардирующая и испускаемая (или испускаемые) в ядерной реакции частицы.

В ядерной физике эффективность взаимодействия характеризуютэффективным сечением s. С каждым видом взаимодействия частицы с ядром связывают свое эффек­тивное сечение: эффективное сечение рассеяния определяет процессы рассеяния, эффек­тивное сечение поглощения — процессы поглощения. Эффективное сечение ядерной реакции

где N — число частиц, падающих за единицу времени на единицу площади поперечного сечения вещества, имеющего в единице объема п ядер, dN — число этих частиц, вступающих в ядерную реакцию в слое толщиной dx. Эффективное сечение s имеет размерность площади и характеризует вероятность того, что при падении пучка частиц навещество произойдет реакция.

Единица эффективного сечения ядерных процессов — барн (1 барн= 10–28 м2). В любой ядерной реакции выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (и сумма массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (и сумме массовых чисел) конечных продук­тов (ядер и частиц) реакции. Выполняются также законы сохранения энергии, импульса и момента импульса.

В отличие от радиоактивного распада, который протекает всегда с выделением энергии, ядерные реакции могут быть как экзотермическими (с выделением энергии), так и эндотермическими (с поглощением энергии).

Важную роль в объяснении механизма многих ядерных реакций сыграло пред­положение Н. Бора (1936) о том, что ядерные реакции протекают в две стадии по следующей схеме:

(262.1)

Первая стадия — это захват ядром Х частицы а, приблизившейся к нему на расстояние действия ядерных сил (примерно 2×10–15 м), и образование промежуточного ядра С, называемого составным (или компаунд-ядром). Энергия влетевшей в ядро частицы быстро распределяется между нуклонами составного ядра, в результате чего оно оказывается в возбужденном состоянии. При столкновении нуклонов составного ядра один из нуклонов (или их комбинация, например дейтрон — ядро тяжелого изотопа водорода — дейтерия, содержащее один протон и один нейтрон) или a-частица может получить энергию, достаточную для вылета из ядра. В результате возможна вторая стадия ядерной реакции — распад составного ядра на ядро Y и частицу b.

В ядерной физике вводится характерное ядерное время — время, необходимое для пролета частицей расстояния порядка величины, равной диаметру ядра (d»10–15 м). Так, для частицы с энергией 1 МэВ (что соответствует ее скорости v»107 м/с) характер­ное ядерное время t=10–15 м/107 м/с=10–22 с. С другой стороны, доказано, что время жизни составного ядра равно 10–16—10–12 с, т. е. составляет (106—1010) t. Это же означает, что за время жизни составного ядра может произойти очень много столкновений нуклонов между собой, т. е. перераспределение энергии между нук­лонами действительно возможно. Следовательно, составное ядро живет настолько долго, что полностью «забывает», каким образом оно образовалось. Поэтому харак­тер распада составного ядра (испускание им частицы b) вторая стадия ядерной реакции — не зависит от способа образования составного ядра — первой стадии.

Если испущенная частица тождественна с захваченной (bºа), то схема (262.1) описывает рассеяние частицы: упругое — при Еbа, неупругое — при Еb¹Еа. Если же испущенная частица не тождественна с захваченной (b¹а), то имеем дело с ядерной реакцией в прямом смысле слова.

Некоторые реакции протекают без образования составного ядра, они называются прямыми ядерными взаимодействиями (например, реакции, вызываемые быстрыми нук­лонами и дейтронами).

Ядерные реакции классифицируются по следующим признакам:

1) по роду участвующих в них частиц — реакции под действием нейтронов; реакции под действием заряженных частиц (например, протонов, дейтронов, a-частиц); реакции под действием g-квантов;

2) по энергии вызывающих их частиц — реакции при малых энергиях (порядка электрон-вольт), происходящие в основном с участием нейтронов; реакции при средних энергиях (до нескольких мегаэлектрон-вольт), происходящие с участием g-квантов и заряженных частиц (протоны, a-частицы); реакции при высоких энергиях (сотни и тысячи мегаэлектрон-вольт), приводящие к рождению отсутствующих в свободном состоянии элементарных частиц и имеющие большое значение для их изучения;

3) по роду участвующих в них ядер — реакции на легких ядрах (А< 50); реакции на средних ядрах (50<А< 100); реакции на тяжелых ядрах (А> 100);

4) по характеру происходящих ядерных превращений — реакции с испусканием ней­тронов; реакции с испусканием заряженных частиц; реакции захвата (в этих реакциях составное ядро не испускает никаких частиц, а переходит в основное состояние, излучая один или несколько g-квантов).

Первая в истории ядерная реакция осуществлена Э. Резерфордом (1919) при бом­бардировке ядра азота a-частицами, испускаемыми радиоактивным источником:

§ 263. Позитрон. b+-Распад. Электронный захват

П. Дираком было получено (1928) релятивистское волновое уравнение для электрона, которое позволило объяснить все основные свойства электрона, в том числе наличие у него спина и магнитного момента. Замечательной особенностью уравнения Дирака оказалось то, что из него для полной энергии свободного электрона получались не только положительные, но и отрицательные значения. Этот результат мог быть объяснен лишь предположением о существовании античастицы электрона —позитрона.

Гипотеза Дирака, недоверчиво воспринимавшаяся большинством физиков, была блестяще подтверждена в 1932 г. К. Андерсеном (американский физик (р. 1905); Нобелевская премия 1936 г.), обнаружившим позитрон в составе космического излуче­ния. Существование позитронов было доказано наблюдением их треков в камере Вильсона, помещенной в магнитном поле. Эти частицы в камере отклонялись так,какотклоняется движущийся положительный заряд. Опыты показали, что позитрон е — частица с массой покоя, в точности равной массе покоя электрона, и спином ½ (в единицах ), несущая положительный электрический заряд +е.

Жолио-Кюри — Фредерик (1900—1958) и Ирен (1897—1956), — бомбардируя раз­личные ядра a-частицами (1934), обнаружили искусственно-радиоактивные ядра (см. § 255), испытывающие b-распад, а реакции на В, Аl и Mg привели к искусствен­но-радиоактивным ядрам, претерпевающим b+-распад, или позитронный распад:

(Нобелевская премия 1956 г.) Наличие в этих реакциях позитронов доказано при изучении их треков в камере Вильсона, помещенной в магнитное поле.

Таким образом, в экспериментах Жолио-Кюри, с одной стороны, открыта искус­ственная радиоактивность, а с другой — впервые обнаружен позитронный радиоактив­ный распад.

Энергетический b+-спектр, как и b-спектр (см. § 258), непрерывен. b+-Распад подчиняется следующему правилу смещения:

Процесс b+-распада протекает так, как если бы один из протонов ядра превратился в нейтрон, испустив при этом позитрон и нейтрино:

(263.1)

причем одновременный выброс нейтрино вытекает из тех же соображений, которые излагались при обсуждении b-распада (см. § 258). Так как масса покоя протона меньше, чем у нейтрона, то реакция (263.1) для свободного протона наблюдаться не может. Однако для протона, связанного в ядре благодаря ядерному взаимодействию частиц, эта реакция оказывается энергетически возможной.

Вскоре после опытов К. Андерсена, а также обоснования b+-распада было устано­влено, что позитроны могут рождаться при взаимодействии g-квантов большой энер­гии (Еg > 1,02 МэВ = 2meс2) с веществом (см. также § 259). Этот процесс идет по схеме

(263.2)

Электронно-позитронные пары были действительно обнаружены в помещенной в маг­нитное поле камере Вильсона, в которой электрон и позитрон, имеющие проти­воположные по знаку заряды, отклонялись в противоположные стороны.

Для выполнения соотношения (263.2) помимо выполнения законов сохранения энергии и импульса необходимо, чтобы фотон обладал целым спином, равным 0 или 1, поскольку спины электрона и позитрона равны ½ . Ряд экспериментов и теоретических выкладок привели к выводу, что спин фотона действительно равен 1 (в единицах ).

При столкновении позитрона с электроном происходит их аннигиляция:

(263.3)

в ее процессе электронно-позитронная пара превращается в два g-кванта, причем энергия пары переходит в энергию фотонов. Появление в этом процессе двух g-квантов следует из закона сохранения импульса и энергии. Реакция (263.3) подтверждена прямыми экспериментами под руководством российского ученого Л. А. Арцимовича (1909—1973). Процессы (263.2) и (263.3) — процессы возникновения и превращения электронно-позитронных пар — являются примером взаимосвязи различных форм ма­терии: в этих процессах материя в форме вещества превращается в материю в форме электромагнитного поля, и наоборот.

Для многих ядер превращение протона в нейтрон, помимо описанного процесса (263.1), происходит посредством электронного захвата, или е-захвата, при котором ядро спонтанно захватывает электрон с одной из внутренних оболочек атома (К, L и т. д.), испуская нейтрино:

Необходимость появления нейтрино вытекает из закона сохранения спина. Схема е-захвата:

т. е. один из протонов ядра превращается в нейтрон, заряд ядра убывает на единицу и оно смещается влево так же, как и при позитронном распаде.

Электронный захват обнаруживается по сопровождающему его характеристичес­кому рентгеновскому излучению, возникающему при заполнении образовавшихся ва­кансий в электронной оболочке атома (именно так е-захват и был открыт в 1937 г.). При е-захвате, кроме нейтрино, никакие другие частицы не вылетают, т. е. вся энергия распада уносится нейтрино. В этом е-захват (часто его называюттретьим видом b-распада) существенно отличается от b±-распадов, при которых вылетают две части­цы, между которыми и распределяется энергия распада. Примером электронного захвата может служить превращение радиоактивного ядра бериллия Ве в стабильное ядро Li:

§ 264. Открытие нейтрона. Ядерные реакции под действием нейтронов

Нейтроны, являясь электрически нейтральными частицами, не испытывают кулоновского отталкивания и поэтому легко проникают в ядра и вызывают разнообразные ядерные превращения. Изучение ядерных реакций под действием нейтронов не только сыграло огромную роль в развитии ядерной физики, но и привело к появлению ядерных реакторов (см. § 267).

Краткая история открытия нейтрона такова. Немецкие физики В. Боте (1891—1957) и Г. Беккер в 1930 г., облучая ряд элементов, в частности ядра бериллия, a-частицами, обнаружили возникновение излучения очень большой проникающей спо­собности. Так как сильно проникающими могут быть только нейтральные частицы, то было высказано предположение, что обнаруженное излучение — жесткие g-лучи с энер­гией примерно 7 МэВ (энергия рассчитана по поглощению). Дальнейшие эксперименты (Ирен и Фредерик Жолио-Кюри, 1931 г.) показали, что обнаруженное излучение, взаимодействуя с водородосодержащими соединениями, например парафином, выби­вает протоны с пробегами примерно 26 см. Из расчетов следовало, что для получения протонов с такими пробегами предполагаемые g-кванты должны были обладать фантастической по тем временам энергией 50 МэВ вместо расчетных 7 МэВ!

Пытаясь найти объяснение описанным экспериментам, английский физик Д. Чэдвик (1891—1974) предположил (1932), а впоследствии доказал, что новое проникающее излучение представляет собой не g-кванты, а поток тяжелых нейтральных частиц, названных им нейтронами. Таким образом, нейтроны были обнаружены в следующей ядерной реакции:

Эта реакция не является единственной, ведущей к выбрасыванию из ядер нейтронов (например, нейтроны возникают в реакциях Li (a, n) B и В (a, п) N).

Характер ядерных реакций под действием нейтронов зависят от их скорости (энергии). В зависимости от энергии нейтроны условно делят на две группы:медленные и быстрые. Область энергий медленных нейтронов включает в себя областьультрахолодных (с энергией до 10–7 эВ),очень холодных (10–7 — 10–4 эВ),холодных(10–4 — 10–3 эВ),тепловых (10–3 — 0,5 эВ) ирезонансных (0,5 — 104 эВ) нейтронов. Ко второй группе можно отнестибыстрые (104 — 108 эВ),высокоэнергетичные(108 — 1010 эВ) ирелятивистские (³1010 эВ) нейтроны.

Замедлить нейтроны можно пропуская их через какое-либо вещество, содержащее водород (например, парафин, вода). Проходя через такие вещества, быстрые нейтроны испытывают рассеяние на ядрах и замедляются до тех пор, пока их энергия не станет равной, например, энергии теплового движения атомов вещества замедлителя, т. е. равной приблизительно kT.

Медленные нейтроны эффективны для возбуждения ядерных реакций, так как они относительно долго находятся вблизи атомного ядра. Благодаря этому вероятность захвата нейтрона ядром становится довольно большой. Однако энергия медленных нейтронов мала, потому они не могут вызывать, например, неупругое рассеяние. Для медленных нейтронов характерны упругое рассеяние на ядрах (реакция типа (п, п)) и радиационный захват (реакция типа (п, g)). Реакция (п, g) приводит к образованию нового изотопа исходного вещества:

например

Часто в результате (n, g)-реакции образуются искусственные радиоактивные изо-топы, дающие, как правило, b-распад. Например, в результате реакции

образуется радиоактивный изотоп Р, претерпевающий b-распад с образованием стабильного изотопа серы:

Под действием медленных нейтронов на некоторых легких ядрах наблюдаются также реакции захвата нейтронов с испусканием заряженных частиц—протонов и a-частиц (под действием тепловых нейтронов):

(используется для обнаружения нейтронов) или

(используется для получения трития, в частности в термоядерных взрывах; см. § 268).

Реакции типа (n, р) и (n,), т. е. реакции с образованием заряженных частиц, происходят в основном под действием быстрых нейтронов, таккак в случае медленных нейтронов энергии атомного ядра недостаточно для преодоления потенциального барьера, препятствующего вылету протонов и a-частиц. Эти реакции, как и реакции радиационного захвата, часто ведут к образованию b-активных ядер.

Для быстрых нейтронов наблюдается неупругое их рассеяние, совершающееся по схеме

где вылетающий из ядра нейтрон обозначен как п', поскольку это не тот нейтрон, который проник в ядро; п' имеет энергию, меньшую энергии п, а остающееся после вылета нейтрона ядро находится в возбужденном состоянии (отмечено звездочкой), поэтому его переход в нормальное состояние сопровождается испусканием g-кванта.

Когда энергия нейтронов достигает значений 10 МэВ, становятся возможными реакции типа (n, 2n). Например, в результате реакции

образуется b-активный изотоп U, претерпевающий распад по схеме

U ® Np + е.

§ 265. Реакция деления ядра

К началу 40-х годов работами многих ученых—Э. Ферми (Италия), О. Гана (1879—1968), Ф. Штрассмана (1902—1980) (ФРГ), О. Фриша (1904—1979) (Великобри­тания), Л. Мейтнер (1878—1968) (Австрия), Г.Н. Флерова (р. 1913), К.Н. Петржака (Россия) — было доказано, что при облучении урана нейтронами образуются элементы из середины Периодической системы — лантан и барий. Этот результат положил начало ядерным реакциям совершенно нового типа —реакциям деления ядра, заключа­ющимся в том, что тяжелое ядро под действием нейтронов, а как впоследствии оказалось и других частиц делится на несколько более легких ядер (осколков), чаще всего на два ядра, близких по массе.

Замечательной особенностью деления ядер является то, что оно сопровождается испусканием двух-трех вторичных нейтронов, называемыхнейтронами деления. Так как для средних ядер число нейтронов примерно равно числу протонов (N/Z»1), а для тяжелых ядер число нейтронов значительно превышает число протонов (N/Z»1,6), то образовавшиеся осколки деления перегружены нейтронами, в результате чего они и выделяют нейтроны деления. Однако испускание нейтронов деления не устраняет полностью перегрузку ядер-осколков нейтронами. Это приводит к тому, что осколки оказываются радиоактивными. Они могут претерпеть ряд b-превращений, сопровож­даемых испусканием g-квантов. Так как b-распад сопровождается превращением нейтрона в протон (см. (258.1)), то после цепочки b-превращений соотношение между нейтронами и протонами в осколке достигнет величины, соответствующей стабиль­ному изотопу. Например, при делении ядра урана U

(265.1)

осколок деления Хе в результате трех актов b-распада превращается в стабильный изотоп лантана La:

Осколки деления могут быть разнообразными, поэтому реакция (265.1) не единственная приводящая к делению U. Возможна, например, реакция

Большинство нейтронов при делении испускается практически мгновенно (t £ 10–14 с), а часть (около 0,7%) испускается осколками деления спустя некоторое время после деления (0,05 с £ t £ 60 с). Первые из них называютсямгновенными,вторые —запаздывающими. В среднем на каждый акт деления приходится 2,5 ис­пущенных нейтронов. Они имеют сравнительно широкий энергетический спектр в пре­делах от 0 до 7 МэВ, причем на один нейтрон в среднем приходится энергия около 2 МэВ.

Расчеты показывают, что деление ядер должно сопровождаться также выделением большого количества энергии. В самом деле, удельная энергия связи для ядер средней массы составляет примерно 8,7 МэВ, в то время как для тяжелых ядер она равна 7,6 МэВ (см. § 252). Следовательно, при делении тяжелого ядра на два осколка должна освобождаться энергия, равная примерно 1,1 МэВ на один нуклон.

Эксперименты подтверждают, что при каждом акте деления действительно выделя­ется огромная энергия, которая распределяется между осколками (основная доля), нейтронами деления, а также между продуктами последующего распада осколков деления.

В основу теории деления атомных ядер (Н. Бор, Я. И. Френкель) положена капель­ная модель ядра (см. § 254). Ядро рассматривается как капля электрически заряженной несжимаемой жидкости (с плотностью, равной ядерной, в подчиняющейся законам квантовой механики), частицы которой при попадании нейтрона в ядро приходят в колебательное движение, в результате чего ядро разрывается на две части, разлета­ющиеся с огромной энергией.

Вероятность деления ядер определяется энергией нейтронов. Например, если высокоэнергетичные нейтроны (см. § 264) вызывают деление практически всех ядер, то нейтроны с энергией в несколько мегаэлектрон-вольт — только тяжелых ядер (А>210). Нейтроны, обладающиеэнергией активации (минимальной энергией, необходимой для осуществления реакции деления ядра) порядка 1 МэВ, вызывают деление ядер урана U, тория Th, протактиния Ра и плутония Pu. Тепловыми нейтронами делятся ядра U, Pu и U, Th (два последних изотопа в природе не встречаются, они получаются искусственным путем). Например, изотоп U получается в результате радиационного захвата (реакции (n, g), см. § 264) нейтронов ядром Th:

(265.2)

§ 266. Цепная реакция деления

Испускаемые при делении ядер вторичные нейтроны могут вызвать новые акты деления, что делает возможным осуществление цепной реакции деления — ядерной реакции, в которой частицы, вызывающие реакцию, образуютсякак продукты этой реакции. Цепная реакция деления характеризуется коэффициентом размножения k ней­тронов, который равен отношению числа нейтронов в данном поколении к их числу в предыдущем поколении. Необходимым условием для развития цепной реакции деле­ния является требование k ³ 1.

Оказывается, что не все образующиеся вторичные нейтроны вызывают последу­ющее деление ядер, что приводит к уменьшению коэффициента размножения. Во-первых, из-за конечных размеров активной зоны (пространство, где происходит цепная реакция) и большой проникающей способности нейтронов часть из них покинет активную зону раньше, чем будет захвачена каким-либо ядром. Во-вторых, часть нейтронов захватывается ядрами неделящихся примесей, всегда присутствующих в ак­тивной зоне. Кроме того, наряду с делением могут иметь место конкурирующие процессы радиационного захвата и неупругого рассеяния.

Коэффициент размножения зависит от природы делящегося вещества, а для дан­ного изотопа — от его количества, а также размеров и формы активной зоны. Мини­мальные размеры активной зоны, при которых возможно осуществление цепной реак­ции, называютсякритическими размерами. Минимальная масса делящегося вещества, находящегося в системе критических размеров, необходимая для осуществленияцепной реакция, называетсякритической массой.

Скорость развития цепных реакций различна. Пусть Т — среднее время жизни одного поколения, а N — число нейтронов в данном поколении. В следующем поколе­нии их число равно kN, т. е. прирост числа нейтронов за одно поколение dN = kN—N = N(k—1). Прирост же числа нейтронов за единицу времени, т. е. ско­рость нарастания цепной реакции,

(266.1)

Интегрируя (266.1), получим

где N0 — число нейтронов в начальный момент времени, а N — их число в момент времени t. N определяется знаком (k—1). При k>1 идет развивающаяся реакция, число делений непрерывно растет и реакция может стать взрывной. При k=1 идет самоподдерживающаяся реакция, при которой число нейтронов с течением времени не изменяет­ся. При k<1 идет затухающая реакция.

Цепные реакции делятся науправляемыеинеуправляемые. Взрыв атомной бомбы, например, является неуправляемой реакцией. Чтобы атомная бомба при хранении не взорвалась, в ней U (или Pu) делится на две удаленные друг от друга части с массами ниже критических. Затем с помощью обычного взрыва эти массы сближают­ся, общая масса делящегося вещества становится больше критической и возникает взрывная цепная реакция, сопровождающаяся мгновенным выделением огромного количества энергии и большими разрушениями. Взрывная реакция начинается за счет имеющихся нейтронов спонтанного деления или нейтронов космического излучения. Управляемые цепные реакции осуществляются в ядерных реакторах (см. § 267).


Поделиться:

Дата добавления: 2014-10-31; просмотров: 169; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты