КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Правила смещения.При радиоактивном распаде выполняется закон сохранения электрических зарядов
и закон сохранения массовых чисел
где ZЯе и АЯ - соответственно заряд и массовое число материнского ядра; Zie и Аi - соответственно заряды и массовые числа частиц, получившихся в результате радиоактивного распада. Следствием этих законов являются правила смещения, позволяющие установить, какое ядро возникает в результате распада данного материнского ядра в различных типах радиоактивного распада:
где Возникающие в результате радиоактивного распада ядра могут быть, в свою очередь, радиоактивными. Это приводит к возникновению цепочки, или ряда радиоактивных превращений, заканчивающихся стабильным элементом. Совокупность элементов, образующих такую цепочку, называется радиоактивным семейством. Естественно радиоактивные ядра образуют три радиоактивных семейства, называемых семейством урана ( 9. Альфа-распад. В основном α-распад характерен для тяжелых ядер (А> 200, Z> 82). α-Распад подчиняется правилу смещения, например, распад изотопа урана
Согласно современным представлениям, α -частицы образуются внутри тяжелых ядер вследствие объединения двух протонов и двух нейтронов. Такая образовавшаяся частица сильнее отталкивается от оставшихся протонов ядра, чем отдельные протоны. Одновременно α-частица испытывает меньшее ядерное притяжения к нуклонам в ядре, чем отдельные нуклоны. Скорости вылетающих при распаде α-частиц очень велики – (1,4 – 2)107м/с, что соответствует энергиям 4 - 8,8 МэВ. Опыты Резерфорда показали, что даже имея такие скорости α-частицы не могут приблизиться к ядру на расстояние, при котором начинают действовать ядерные силы и рассеяние α-частиц на ядре объясняется только кулоновским взаимодействием. Т.о. можно сделать вывод, что ядро окружено потенциальным барьером, высота которого не меньше 8,8Мэв. С другой стороны, α-частицы испускаемые ураном имеют энергию 4,2 МэВ. Следовательно, α-частицы вылетают из ядра с энергией, значительно меньше высоты потенциального барьера вследствие туннельного эффекта. Для α-частиц характерна сильная зависимость между периодом полураспада Т1/2 и энергией Е вылетающих частиц. Эта зависимость определяется законом Гейгера-Нэттола
где А и В эмпирические (определяемые из опыта) константы, λ=(ln2)/ Т1/2 , Rα – пробег α-частицы в воздухе - расстояние, проходимое частицей до ее полной остановки. Т.о. чем меньше период полураспада, тем больше пробег α-частицы, а следовательно, и ее энергия. Пробег α-частиц в воздухе (при нормальных условиях) составляет несколько сантиметров, в более плотных средах он гораздо меньше, составляя сотые доли миллиметра (α-частицы можно задержать обычным листом бумаги). Энергетический спектр α-частиц, испускаемых данным радиоактивным элементом, обнаруживает "тонкую" структуру, т.е. испускается несколько групп α -частиц, причем в пределах каждой группы их энергии практически постоянны. Дискретный спектр α -частиц свидетельствует о том, что атомные ядра обладают дискретными энергетическими уровнями.
|