Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Малі тіла Сонячної системи — астероїди, комети, метеори




Читайте также:
  1. Авторські системи
  2. Аксіома 1: Розвиток (еволюція) системи визначається деякою ціллю й інформаційними ресурсами системи, її інформаційною відкритістю.
  3. Аналіз системи, що автоматизується у заданій предметній області, напрямків її розвитку, бізнес-процесів, принципів моделювання
  4. Валютні системи: поняття, структура, призначення
  5. Використання системи академічних кредитів у деяких країнах ЄС
  6. Вимоги до системи пожежного захисту
  7. Виробничі системи
  8. Виховна системи І. Канта.
  9. Впровадження та вдосконалення системи
  10. Глобалізація як основна тенденція розвитку сучасної світової системи

 

У Сонячній системі, окрім Сонця і дев’яти великих планет, є ще так звані малі тіла. Це малі планети або астероїди, комети, метеорні тіла або метеороїди і міжпланетний пил. У наш час доводиться говорити і про космічне сміття - сукупність штучних об'єктів та їхніх фрагментів у космосі, які не функціонують, але здатні пошкодити або навіть зруйнувати штучний супутник чи міжпланетну станцію.

Після появи правила Тиціуса-Боде, за яким можна було наближено визначити відстані планет від Сонця за допомогою простої залежності, група астрономів у 1796 р. розпочала пошук небесного тіла, яке мало б знаходитися на відстані 2,8 а. о. Але відкриття цього тіла цілком випадково зробив італійський астроном Джузеппе Піацці (1746-1826). 1 січня 1801 р., займаючись складанням каталогу зір, він знайшов зореподібний об'єкт 7"', який за добу змістився на 6'. Цю першу з малих планет або астероїдів назвали іменем античної богині плодючості - Церера. Вона найбільша серед відомих малих планет, її діаметр оцінюють у 1 000 км. Зразу ж було відкрито ще три малих планети: Паллада (діаметр близько 600 км), Веста (540 км) і Юнона (245 км).

Рисунок - Астероїд

Впродовж XIX ст. кількість малих планет поступово збільшувалась, а з кінця століття їх стали відшукувати фотографічним методом: під час тривалих експозицій зображення астероїда внаслідок швидкого руху має вигляд рисочки, а тому його неважко відрізнити від зір. Згодом на відстані від 2,2 а. о. до 3,2 а. о., у так званому поясі астероїдів, до кінця XX ст. було виявлено і надійно встановлено параметри орбіт понад 9 000 малих планет. Найяскравіша серед них - Веста - має блиск 6,5'", всі інші - слабкіші.

Фізичні характеристики:

ž розміри від 1 км до 1500 км;

ž відсутня атмосфера і гідросфера;

ž різна форма: від кульової до сигароподібної;

ž різна структура поверхні, здатність відбивати світло;

ž різні періоди осьового обертання: від декількох годин до декількох діб.

Астероїдам з добре визначеними орбітами привласнюють номери (в порядку відкриття) і назви. Перша сотня, за деякими винятками, названа іменами богинь грецької і римської міфології. Згодом астрономи звернулися до міфів інших народів, потім - до епосу. Зараз астероїди мають найрізноманітніші назви, де є імена видатних вчених: Коперник (1822), Ейнштейн (2001); географічні назви: Амазонка (1042), Україна (1709); імена персонажів художніх творів та героїнь опер: Кармен (558), Аїда (861); назви наук: Геометрія (876), Астрономія (1154); квітів: Мальва (1072). Серед астероїдів є такі, назви яких пов'язані з Україною, як-от: Ялта (1475), Одеса (2606), Київ (2171), є також Кобзар (2427), Каменяр (2428), астероїди Всехсвятський (2721), Амосов (2948), Філатов (5316) тощо.



Загалом право надати ім'я астероїдові має вчений, який його відкрив, після чого пропозиція розглядається Комісією Міжнародного Астрономічного Союзу і затверджується Конгресом МАС.

Загальна кількість астероїдів – 30-50 тисяч, розміром більше 200 км – близько 30 штук, від 80 до 200 км – близько тисячі.

Рисунок - Астероїди

Найбільший астероїд – Церера, радіус 470 км.

Найближчі до Сонця астероїди – Фаетон і Ікар, найбільш віддалений – Хірон.

На астероїді Гаспра є магнітне поле.

Більшість астероїдів з відомими орбітами мають розміри до кількох десятків кілометрів; це - тверді кам'янисті тіла. Кількість астероїдів з розмірами понад 1 км, можливо, сягає 50 тис, а менших від 1 км - сотні тисяч. Однак повна маса малих тіл, очевидно, не перевищує 1-го маси Місяця, і з усіх астероїдів, разом узятих, скомпонувалася б планета не більша 1 500 км в діаметрі.



Рухаються астероїди навколо Сонця в той же бік, що й планети, і мають витягнуті еліптичні орбіти. Деякі виходять далеко за межі поясу астероїдів. Одні з них в афелії віддаляються за орбіту Сатурна, інші в перигелії навіть проникають усередину орбіти Меркурія. Наприклад, Ікар, відкритий 1949 р., має перигелій 28 млн км і кожні 19 років наближається до Землі. Останній раз це відбулося 1987 р., коли відстань до астероїда становила кілька мільйонів кілометрів.

Подорожуючи до Юпітера, АМС «Галілей» (СІЛА) у 1993 р. передала на Землю зображення двох астероїдів - Гас при та Іди. Зокрема на їді поперечником 56 км вдалося розгледіти величезну кількість дрібних кратерів, і на віддалі до 100 км від неї - маленький супутник розміром лише 1,5 км.

Рисунок – Орбіти астероїдів

З 1992 р. розпочалось відкриття нових об'єктів - астероїдів з поясу Койпера або планетоїдів («планетоподібних»). Включаючи Плутон, пояс Койпера починається за орбітою Нептуна і тягнеться, як гадають, на відстань до 150 а.о. На початок 2000 р. було відомо близько 120 планетоїдів з розмірами до 400 кілометрів. А найбільший серед них, відкритий 1996 р., має розмір близько 800 км, що становить третину поперечника Плутона. За попередніми оцінками, окрім великих планетоїдів, у поясі Койпера мусять знаходитись біля 200 млн невеликих тіл розмірами 5-10 км і менше. На відміну від малих планет із поясу астероїдів, ці тіла в основному складаються з льоду.

Комети. Певно, найефектнішими малими тілами Сонячної системи є комети. У перекладі з грецької слово «комета» означає «довговолоса». Довгий час, услід за Арістотелем, дотримувалися думки, нібито комети - це згущення газів у земній атмосфері. Лише датський астроном Тіхо Браге переконливо довів: ці об'єкти знаходяться далі від Місяця. А сподвижник Ньютона Едмонд Галлей (1656-1742) визначив, що ці світила належать до Сонячної системи. Дотепер зареєстровано близько 1 100 комет.

Рисунок – Комета

Фізичні характеристики:

ž мають ядро і хвіст;

ž рухаються по дуже витягнутих, еліпсоподібних орбітах навколо Сонця;

ž переважна більшість комет знаходяться в хмарі Оорта (1012 – 1013 штук) та поясі Копейра (35 тис. розмірами більше 100 км, інших – близько 1 млрд.)

На відміну від астероїдів, що мають орбіти з малим ексцентриситетом, орбіти комет - це дуже витягнуті еліпси. Частіше за все еліпси витягнуті так, що ділянки орбіт, які пролягають усередині Сонячної системи, мають вигляд параболи чи гіперболи. Від ступеня витягнутості еліпса залежить і період обертання комети навколо Сонця. Наприклад, комета Енкв має період обертання навколо Сонця 3,31 роки. Найвідоміша серед комет - комета Галлея - повертається до Сонця кожні 75,5 років. її появу у близьких до Сонця околицях зареєстровано вже 30 разів, із них двічі - у XX ст. (1910 і 1986 рр.).

Рисунок – Орбіти комет Рисунок – Орбіта комети Галлея


Комети, відомі за їхніми попередніми появами, астрономи називають періодичними. Але таких комет небагато, близько 330. Основна маса комет, а їх відкривають щороку кілька десятків, влітають в Сонячну систему з величезною швидкістю і точнісінько так само, обігнувши Сонце, покидають її. їхні періоди обертання становлять від тисяч до десятків мільйонів років. Прилітають вони до Сонця з величезної кометної хмари, так званої хмари Оорта.

Згідно з теорією, розробленою у 1950 р. нідерландським астрономом Я. Оортом, на відстані приблизно 100-150 тис. а. о. від Сонця знаходиться величезна кількість - сотні мільйонів чи може й мільярди окремих комет. За припущенням, хмара Оорта - це залишки матеріалу, які не пішли на утворення планет Уран і Нептун. Ще на ранніх стадіях розвитку Сонячної системи під дією збурюючих сил з боку планет-гігантів вони були викинуті на велику відстань за межі планетних орбіт.

Рисунок – Хмара Оорта

Хмара Оорта – найбільша загадка Сонячної системи. Люди ніколи не бачили цієї гіпотетичної ділянки Всесвіту, котра, згідно з теоріями, є місцем утворення комет із довгим періодом обертання. Вчені припускають, що хмара Оорта розташована на відстані від 50 тис. до 100 тис. а. о. від нашого Сонця. Її зовнішні кордони лежать на межі Сонячної системи, і мільярди тіл із хмари Оорта гравітаційно прив’язані до Сонця.

В середньому раз на 20 років з'являється комета, яку добре видно неозброєним оком, усі ж інші спостерігаються лише в телескоп.

Відомий астроном Ф. Уїппл із Кембриджа припустив, що кометні ядра - це величезні грудки зі снігу, куди вкраплені тугоплавкі частинки. Безпосередня зустріч космічних апаратів «Вега-1», «Вега-2» і «Джотто» в 1985-1986 рр. з кометою Галлея підтвердила цю здогадку. До складу ядер комет входять в основному водяний лід та інші льоди - метановий, аміачний, з вуглекислого газу. Тугоплавкі частинки складаються з металів та силікатів.

На великих відстанях від Сонця кометне ядро побачити неможливо. Адже розміри його, як правило, не перевищують 10-20 км, і світла воно відбиває дуже мало. Наприклад, у комети Галлея ядро має неправильну форму і розміри 16x8x8 км. Та з наближенням до Сонця, починаючи з відстані 6 а. о., кометний лід починає випаровуватись. Газ, що випаровується, тягне за собою пилинки. Продукти випаровування і пилинки навколо ядра утворюють кому або голову комети, яскравість якої швидко зменшується в напрямку до краю.

Під дією тиску сонячного світла і сонячного вітру (потоків заряджених частинок з боку Сонця) речовина голови комети відкидається у бік, протилежний від Сонця, утворюючи протяжний хвіст комети. От тоді, власне кажучи, комета і стає «кометою» — «довговолосою».

Через дію тих же сил тиску, віддаляючись від Сонця, комета рухається вже хвостом уперед. Чим ближча комета до Сонця, тим довшим стає її хвіст, збільшується і голова комети. В момент проходження комети біля Сонця діаметр її голови може перевищувати відстань від Землі до Місяця. А хвіст комети іноді простягається на відстань до 150 млн км. Залежно від того, яка сила має переважну дію на комету - сила відштовхування за рахунок тиску сонячного вітру і сонячного світла чи сила притягання з боку Сонця, — кометні хвости набувають різної форми.

За рахунок випаровування речовина комети безперервно розсіюється у просторі, і її маса зменшується, так само як і вміст летких складових у зовнішніх шарах ядра. При проходженні перигелію поблизу земної орбіти комета може втратити поверхневий шар товщиною до кількох метрів. Тривале існування таких комет, як комета Галлея, пояснюють утворенням пористого теплоізоляційного шару, який перешкоджає занадто інтенсивному випаровуванню.

Густина речовини в голові (окрім центральної її частини) та хвості комети дуже мала. А тому, якщо навіть Земля пройде крізь хвіст комети, це не буде загрозою для біосфери Землі. Однак, відбиваючи сонячне світло, комети яскраво світяться на тлі ще більш розрідженого космічного простору. Але при зіткненні Землі безпосередньо з ядром комети може статися катастрофа. її масштаби залежать від розмірів ядра. За однією з гіпотез, Тунгуська катастрофа 1908 року була викликана падінням на Землю невеликої комети, що мала ядро діаметром близько 500 м. А в липні 1994 р. астрономи спостерігали явище падіння на Юпітер комети Шумейкера-Леві 9, яка перед тим завдяки притяганню планети розділилась на понад 20 фрагментів.

За традицією кометам присвоюють ім'я першовідкривача. Це заохочує багатьох аматорів до пошуків. У XX ст. з кожних чотирьох комет лише одну відкривали астрономи-фахівці. В наш час у космічних просторах мандрують комети, названі іменами таких українських астрономів, як Г. Неуймін, Г. Шайн, М. Черних, К. Чурюмов, С. Герасименко, та аматора астрономії Б. Скоритченка.

Метеори і метеорні потоки. Пилові частинки, що виділяються із хвоста й голови комети, розсіюються вздовж її орбіти. Якщо ця орбіта перетинається з орбітою Землі, то час від часу потік пилових частинок буде зустрічатися з земною атмосферою.

ž Метеор – світлове явище, що виникає на висоті від 80 до 130 км при вторгненні в земну атмосферу метеорних тіл (шматків каменю або скупчення космічного пилу).

ž Боліди – особливо яскраві метеори.

ž Метеорити – метеорні тіла, які досягають Землі.

ž Радіант – точка на небі, з якої розлітаються метеори.

Пилові частинки, які рухаються параболічними орбітами, мають швидкість 42 км/с. З іншого боку, швидкість руху Землі по орбіті - майже 30 км/с. Тому залежно від того, наздоганяють частинки Землю чи рухаються їй назустріч, швидкість входження в атмосферу Землі може становити 12-72 км/с.

При рухові крізь атмосферу на висоті 110-80 км маломасивна частинка повністю руйнується. Світлове явище, яке спостерігається при цьому, називається метеором.

Якщо ж падає одразу багато метеорів, спостерігається незвичайне небесне явище - метеорний дощ. Здається, що всі метеори падають з однієї точки неба. Ця точка називається радіантом метеорного потоку. Назва метеорного потоку пов'язується з тим сузір'ям, у якому знаходиться радіант.

Серед метеорів, які спостерігаються на нічному небі, є й такі, що не пов'язані з метеорними потоками. Метеорні тіла або метеороїди, що їх спричиняють, мають індивідуальні орбіти. Це - випадкові, спорадичні метеори. Як правило, це пилинки невеликих розмірів і мас.

       
   
 

Загалом за добу спалахує приблизно 100 млн метеорів, яскравіших за 5т. Ще більше - телескопічних метеорів. Таким чином, щорічно на Землю випадає до 500 000 тонн космічної речовини. Але порівняно з масою Землі це - мізерна величина, яка не відіграє істотної ролі у збільшенні її маси.

Рисунок - Залізний Рисунок - Залізно-кам’яний Рисунок - Кам’яний

метеорит хондрит метеорит

Якщо в атмосферу Землі вривається метеороїд, маса якого становить десятки чи сотні грам, то він породжує явище боліда. Яскраві боліди видно навіть удень.

Метеорне тіло, яке впало на Землю, називається метеоритом. Через роздроблення в атмосфері падіння на поверхню Землі цілого метеорита - велика рідкість.

У 1947 р. в горах Сіхоте-Аліня (Росія) впали залишки дуже великого метеорита загальною масою 23 тонни, що склало третину його початкової маси.

Якщо маса метеорита становить сотні тонн, то при ударі об поверхню Землі утворюється кратер із розмірами, які дорівнюють поперечнику метеорита. Якщо маса метеорита становить десятки і сотні тисяч тонн, космічне тіло вдаряється об Землю з виділенням значної кількості теплової енергії, що породжує вибух. Такий вибух може призвести до дуже великих руйнувань, а від метеорного тіла залишаться лише незначні уламки. Яскравим прикладом подібного є Аризонський кратер діаметром 1 200 м і глибиною 180 м. Розрахунки показують, що метеорит, який утворив цей кратер, мусив мати масу від 60 до 200 тис. тонн і розміри не менше 100 м.

На «обличчі» нашої планети зараз відомо не менше 150 кратерів, які отримали назву астроблем («зоряних ран»), їхній вік сягає десятків та сотень мільйонів років. Є астроблеми і на території України: це кільцеві структури діаметром у кілька сотень кілометрів на півночі та на півдні країни. Найдавніша з них Іллінецька (Вінницька область), вік якої близько 400 млн років, кратер має діаметр 7 км і глибину 700 м.

Щороку на поверхню Землі випадає близько 500 метеоритів масою від 1 кг і більше, проте знаходять їх лише приблизно 20. Колекції цих об'єктів налічують майже 700 метеоритів, падіння яких спостерігали, і близько 900, знайдених випадково. Найбільший метеорит Гоба, знайдений у Південно-Західній Африці, має масу майже 60 тонн.

У наш час найбільше метеоритів збирають в Антарктиді. У місцях, де сильні вітри зривають льодові шапки, метеорит, який упав сотні тисяч років тому, опиняється на поверхні. Знаходять їх багато і в сухих кам'янистих пустелях Західної Австралії та Намібії.

Залежно від хімічного складу метеорити поділяють на кам'яні хондрити - близько 85%, і кам'яні ахондрити (від грец. «хондрос» - «зерно») - 7 %. Таку назву метеорити отримали через наявність або, відсутність у їхньому складі маленьких кулястих залізо-магнієвих силікатних включень у вигляді зерен.

Серед них трапляються такі, що містять вуглецеві хондри (1 % ).

Окрему групу метеоритів складають залізні метеорити з високим вмістом нікелистого заліза (5 %) і залізо-кам'яні (2 %) з невеликими кам'яними включеннями.

Вважається, що метеорити генетично пов'язані з астероїдами. За винятком зразків місячного ґрунту, це єдині космічні тіла, які можна досліджувати в земних лабораторіях. Припускається, що речовина метеоритів являє собою первинну речовину з часів утворення Сонячної системи, а тому за їхньою допомогою визначається її вік - приблизно 4,6 млрд років.

Весь міжпланетний простір заповнено пилом з частинок розмірами в кілька мікронів і газом у вигляді електронів і протонів.

Сонячне світло, яке відбивається пилом і розсіюється на вільних електронах, утворює явище зодіакального світла. Зодіакальне світло спостерігається або на вечірньому небосхилі на заході, або вранці на сході перед появою Сонця. Воно має вигляд слабкого сяйва у формі конуса, вісь якого лежить вздовж екліптики.

Серед усього розмаїття астероїдів і метеороїдів астрономи виділили понад сотню тіл, які через можливість зіткнення з Землею несуть із собою потенційну небезпеку для її мешканців. І хоча досі не зареєстровано жодного випадку загибелі людей від метеоритів, небезпека існує цілком реально.

Так, у штаті Індіана (США) метеорит упав не далі ніж за 4 м від хлопчиків, які гралися. Іншим разом, також у США, великий метеорит влучив у поштову скриньку біля сільського будинку і залишився там. У 1992 р. в Нью-Йорку метеорит вагою 12,4 кг влучив у автомобіль. Зрозуміло, що це не єдині випадки і не виключено, що за довгу історію Землі відбувалися зіткнення планети не тільки з метеороїдами невеликої маси, але і з астероїдами, що призводило до катастрофічних наслідків. З подібною катастрофою пов'язують загибель динозаврів 65 млн років тому.

Окрім тіл природного походження, в навколоземному просторі налічують понад 7 500 штучних об'єктів. Серед них лише 6 % функціонують, а решта - залишки ракет-носіїв, фрагменти зруйнованих КА, тіла супутників, які виробили свій ресурс тощо - це так зване космічне сміття. Воно може випадати на Землю, створюючи космічну загрозу.

Тому не дивно, що вчені розробляють методи своєчасного виявлення, а при потребі - і знищення небезпечних «прибульців». Спеціальні служби контролю, створені в провідних космічних державах, з допомогою радарних, оптичних та інших методів слідкують за навколоземним простором. Сучасні методики дозволяють на висотах 40-50 тис. км виявляти об'єкти до 100 см, а на висотах 200-500 км - навіть до 10 см. Розробляються також проекти «космічних сміттєвозів». Таким чином людство намагається захистити себе від можливої метеоритної небезпеки.

 

 

7.4. Дослідження планет за допомогою космічних апаратів

 

Наша планета оточена з усіх боків таємничим і неосяжним світом небесних тіл. Неозброєним оком можна спостерігати тільки деякі з них — Сонце, Місяць, 5 планет і найбільш яскраві зорі. З розвитком позаатмосферної астрономії стало можливим не тільки вивчення форм далеких космічних тіл за знімками, отриманими з орбітальних лабораторій, але і детальне вивчення проб ґрунту з цікавих для астрономів космічних об'єктів, доставлених з автоматичних міжпланетних станцій (АМС).

Рисунок – АМС

АМС — розвідники Всесвіту, безпілотні космічні літальні апарати, призначені для польоту до інших небесних тіл із метою вивчення Сонячної системи. Автоматичні міжпланетні станції дозволяють проникнути в таємничі куточки космосу, не задіявши при цьому безпосередньо фізичну одиницю, тобто людина вкладає в літальний, повністю комп'ютеризований апарат програму дій, а сама при цьому залишається на Землі. Крім того, чимало областей Сонячної системи мають суворі атмосферні умови, непридатні для людського організму, деякі з них розташовані від нашої планети так далеко, що не вистачить одного людського життя, щоб досягти їхньої поверхні.

АМС запускаються багатоступінчастими ракетами-носіями, які, як правило, спочатку виводять їх на проміжні навколоземні орбіти, а потім надають їм другої космічної швидкості й виводять на міжпланетні орбіти.1

Дослідження за допомогою АМС здійснюються за різними схемами:

— пролітний варіант — при прольоті АМС на близькій відстані від небесного тіла, причому вимірювання проводяться на ділянці максимального зближення;

— варіант супутника планети;

— варіант посадки на небесне тіло.

Два останні варіанти сьогодні воліють поєднувати: АМС робить обліт космічного тіла або виводиться на орбіту його штучного супутника, від неї відокремлюється відсік або апарат, що спускається й здійснює посадку на планету. За такою змішаною схемою вже проводилися дослідження (Венера, Марс).

Оскільки АМС доводиться передавати важливу інформацію на Землю з величезних відстаней, вони обладнуються сонячними батареями або радіоізотопними джерелами електроенергії, руховими установками для корекції траєкторії на міжпланетних ділянках польоту, переходу на орбіту навколо планети і маневрування у навколопланетному просторі, а також великими параболічними антенами, діаметр яких сягає 2—3 м. Маса АМС, у залежності від оснащеності, варіюється від десятків кілограмів до тисяч.

АМС оснащуються різноманітною апаратурою для дослідження самої планети та її атмосфери. Склад наукової апаратури визначається завданнями, що поставлені перед польотом. Якщо політ до якої-небудь планети відбувається вперше, то вимірювання прагнуть провести за великою програмою, основою для якої є відомості, отримані за допомогою астрономічних спостережень. При наступних польотах ставляться більш вузькі й конкретні завдання.

 

7.5. Етапи формування нашої планетної системи

 

Теорія, яка розглядає походження Сонячної системи, повинна пояснювати такі факти:

♦ орбіти всіх планет лежать практично у площині сонячного екватора;

♦ планети рухаються навколо Сонця по орбітах, близьких до кола;

♦ напрямок обертання планет навколо Сонця однаковий для всіх планет і збігається з напрямком обертання Сонця і власним обертанням планет (окрім Венери, Урана і Плутона); у тому ж напрямку, що і планети навколо Сонця, обертається навколо них більшість їхніх супутників;

♦ середня відстань планет від Сонця (за винятком Нептуна і Плутона) підлягає правилу Тиціуса-Боде;

♦ 99,86 % маси Сонячної системи припадає на Сонце і лише 0,14 % на планети, тоді як планетам належить 98 % моменту загальної кількості руху Сонячної системи;

♦ планети поділяються на дві групи, різко відмінні між собою за середньою густиною, хімічним складом, розмірами і внутрішньою будовою.

Впродовж останніх 300 років, починаючи з Декарта (1596-1650), було висловлено кілька десятків космогонічних гіпотез і розглянуто найрізноманітніші варіанти ранньої історії Сонячної системи. Серед мислителів минулого, які намагалися пояснити її походження, були Ж. Бюффон (1707-1788), І. Кант (1724-1804), П. Лаплас (1749-1827), Дж. Джінс (1877-1946) та інші. Але всі гіпотези мали один недолік - добре пояснюючи одну частину спостережних фактів, вони виявлялися безпорадними перед іншою. Наприклад, гіпотеза Лапласа, що припускала виникнення планет із розжареної туманності, не змогла пояснити особливості розподілу моменту кількості руху між планетами і Сонцем.

Рисунок - Ж. Бюффо Рисунок - І. Кант Рисунок - П. Лаплас Рисунок - Дж. Джінс

При розробці космогонічної гіпотези перш за все необхідно вирішити питання: звідки взялася матерія, з якої утворились планети?

На сьогодні найбільш імовірним видається варіант, за яким планети утворились із того ж диска, що й Сонце. Велика роль у розробці цього варіанту належить О. Ю. Шмідту (видатний математик і астроном, 1891-1956), котрий першим висунув гіпотезу про те, що Земля та інші планети сформувалися з холодних допланетних тіл - планетезималей.

Спостережні дані, отримані за допомогою космічних і найпотужніших земних телескопів, підтверджують, що біля багатьох молодих зір головної послідовності справді є навколозоряні пилові оболонки дисковидної форми, які утворилися разом із зорею під час її формування з протозоряної туманності.

Розглянемо можливий сценарій утворення планетної системи, уточнений сучасними теоретиками. Найважливіше в цьому сценарії те, що він спирається не тільки на єдиний ще до недавнього часу приклад Сонячної системи, але і на приклади інших планетних систем, відкритих за останні роки. Теорія походження планетних систем біля зір, хоча і не сформульована ще остаточно, має тепер під собою надійну спостережну основу.

Маса газово-пилового диска, який оточує протозорю, становить кілька відсотків від маси Сонця і спочатку може мати розміри, порівнянні з її розмірами. Хімічний склад такого диска відповідає складу міжзоряних туманностей - 99 % газу і 1 % пилових частинок розмірами від 0,1 мкм до 1 мм.

При підвищенні температури протозорі нагрівається диск, частинки пилу випаровуються, молекули газу розпадаються на атоми, атоми іонізуються, а розміри диска за рахунок сильної турбуленції - різнонаправленого хаотичного руху частинок - збільшуються до кількох десятків астрономічних одиниць.

Для подолання класичних труднощів з перерозподілом моменту кількості руху між Сонцем і планетами припускається, що Протосонце мало відчутне магнітне поле, яке, взаємодіючи з іонізованим газом, гальмувало його власне обертання і прискорювало обертальний рух протопланетної речовини. Далі диск охолоджується, турбулентність стихає. У ньому знову утворюються тверді пилові частинки - відбувається конденсація. При цьому основні космічні елементи - водень і гелій - залишаються у вигляді газу. А просторовий розподіл пилинок за їхнім хімічним складом залежить від розподілу температури, яка зменшується по мірі віддалення від Протосонця.

Такий перший етап еволюції протопланетного диска (ППД), який триває близько 1 000 років.

На другому етапі формування ППД частинки збільшуються у розмірах, зіштовхуються одна з одною, злипаються. І коли густина пилу стає вищою за густину газу в десятки разів, пиловий диск переходить у стан гравітаційної нестійкості, за якої навіть дуже маленькі згустки, що виникли випадково, не розсіюються, а навпаки, з часом стають ще більшими.

Як наслідок, на третьому етапі еволюції ППД розпадається на безліч окремих малих згустків, які далі, зіштовхуючись і злипаючись, утворюють рій допланетних тіл різного розміру - планетезималі.

Акумуляція планет. Утворення планетезималей тривало десятки тисяч років. Подальше об'єднання їх у планети - набагато довший процес, який тривав сотні мільйонів років.

Допланетний рій був складною системою великої кількості планетезималей. Всі вони, окрім однакової швидкості для тіл на однаковій відстані від Сонця, мали ще й власні швидкості з випадковим розподілом напрямків. Планетезималі зіштовхувались, дробились, і тільки найбільші серед них поступово збільшували свої маси за умови, що швидкість зіткнення не перевищувала 1 м/с.

Внутрішню частину Сонячної системи утворили планети земної групи, їхній ріст відбувався за відсутності летких газів за рахунок кам'янистих частинок і тіл, що містили в собі залізо та інші метали. Основна маса газів розсіялась із зони планет земної групи через видування їх сонячним вітром, який очистив від них і віддаленіші простори Сонячної системи. Проте планети-гіганти Юпітер і Сатурн встигли увібрати в себе достатню кількість газів, як і взагалі переважну частину речовини всієї планетної системи. Причому спочатку, як і в планетах земної групи, у них утворилися ядра із кам'янистих і льодових планетезималей, а потім поверх них нарощувались воднево-гелійові оболонки.

Така схема утворення планет-гігантів підтверджується фактами. По-перше, з'ясувалося, що їхні ядра мають приблизно однакову масу - 14-20 мас Землі, тоді як частка водню і гелію закономірно зменшується. По-друге, існують такі «речові докази» ранньої історії планет-гігантів, як їхні супутники та кільця. Адже випадання газу на планети також супроводжується утворенням навколо них газово-пилових дисків. Із цих дисків і утворилися супутники, причому розподіл їхніх густин, розмірів і мас повторює розподіл планет на земну групу і планети-гіганти.

Щодо найдальшої планети Плутон з його супутником Хароном, то, очевидно, ці два тіла - найближчі та найбільші серед понад стотисячної сім'ї транснептунових об'єктів поясу Койпера. Формування з них ще більш масивної планети через дуже повільний рух і низьку густину речовини йшло так повільно, що не завершилось і досі. І вже ніколи не завершиться, бо взаємні зіткнення, а також збурююча дія Урана і Нептуна значно зменшила їхню кількість.

Особливості обертання навколо своїх осей Венери і Урана пояснюються тим, що в період «бурхливої» юності Сонячної системи ці планети пережили зустріч з дуже масивними планетезималями, такими, що енергії зіткнення виявилося достатньо для того, щоб Уран «покласти на бік», а у Венери змінити напрямок обертання навколо осі на протилежний.

Утворення астероїдів і комет. Оскільки загальна маса всіх астероїдів не перевищує 1/2о маси Місяця, то пояс астероїдів, подібно до кілець Сатурна, - це речовина, що не спромоглася стати планетою. Таке визначення дав свого часу О. Ю. Шмідт, який припустив, що процесові акумуляції завадило сусідство масивного Юпітера. Але чому ж тоді сам Юпітер сформувався не на місці поясу астероїдів, на відстані 3-4 а.о., а далі - на відстані 6 а. о.?

Як вказують розрахунки, на відстані 3-4 а. о. ще є леткі речовини у газоподібному стані, тоді як на відстані Юпітера пролягає межа конденсації водяної пари. Тому в його зоні гравітаційна нестійкість виявилась раніше, тверді згущення росли набагато стрімкіше, ніж у зоні астероїдів. А далі Протоюпітер, набравши масу, своїм гравітаційним збуренням не дав сформуватися планеті у поясі астероїдів.

Більше того, він змінив орбіти деяких із астероїдів так, що ті стали рухатися по витягнутих, а не колових орбітах, перетинаючи орбіти Марса, Землі і навіть Венери та Меркурія. Два таких невеликих астероїди свого часу були захоплені Марсом, перетворившись на його супутники. Деякі астероїди перетворилися з часом на супутники планет-велетнів і рухаються тепер навколо них не в прямому, а у зворотному напрямку (проти обертання планети навколо осі).

Астероїди продовжують зіштовхуватися, дробитись на менші уламки, даючи початок метеорним тілам - метеороїдам, які й у наш час випадають на Землю та на інші небесні тіла у вигляді метеоритів.

Щодо комет, то за сучасними уявленнями періодичні комети приходять до Сонця із поясу Койпера. Всі інші комети - це льодяні планетезималі, закинуті планетами-велетнями в період формування планетної системи на відстань 100-150 тисяч а. о., де вони утворюють уже згадану велетенську і дуже розріджену кометну хмару Оорта. Кометна речовина під час руху комет поблизу Сонця поповнює міжпланетний простір пилом та газом, який вимітається сонячним вітром за її межі.

Земля на початку історії. Початок геологічної історії Землі тісно пов'язаний з її утворенням. Розрахунки показують, що ріст Землі до сучасних розмірів і маси тривав не менше 100 млн років. При цьому температура її поверхні не перевищувала 350-400 К. її надра під дією гравітаційного стискання були дещо теплішими, але не набагато. Земля прогрілася завдяки тому, що в акумуляції брали участь дуже великі тіла радіусом до сотень кілометрів. Падіння таких тіл спричиняло утворення величезних кратерів, під якими до глибини 1-2 тис. км формувались зони високої температури, до 1 500-2 500 К.

Іноді температура сягала точки плавлення гірських порід, і тоді вони розділялися за складом: важкі хімічні елементи (метали) опускалися до центра, а легкі спливали. Додатковий розігрів надр відбувався і за рахунок стиснення порід шарами, що лежали вище. Але основним джерелом розігріву планети був розпад радіоактивних елементів - урану, торію і калію, які в невеликих кількостях були в кам'янистій речовині.

Атмосфера і гідросфера поступово виділилися з твердої речовини планети, оскільки гази і вода входять як складові у гірські породи.

Аналізуючи хімічний склад Сонячної системи, ми знаходимо в планетах високий вміст тих хімічних елементів, які синтезуються під час термоядерних реакцій у надрах зір.

Як вони потрапили у протопланетний диск? Відповідь одна - під час появи наднових, які шаленою силою вибуху розкидають їх у навколишній простір. Отже, слід припустити, що перш ніж з'явилася Сонячна система, речовина, з якої вона формувалась, безперервно поповнювалась важкими хімічними елементами внаслідок спалахів наднових у Галактиці.

Ось такі основні риси сценарію, згідно з яким утворилась Сонячна планетна сім'я. Але цей сценарій дає відповіді не на всі запитання. Наприклад, не зовсім ясно, як утворився Місяць - супутник Землі; незрозуміло, чому у Венери і Меркурія супутники взагалі відсутні, тоді як навіть у деяких астероїдів і супутників планет, не кажучи вже про всі інші великі планети, супутники є? А зараз, коли відкрито інші планетні системи, ми знаходимо, що вони не зовсім схожі на Сонячну. Це свідчить про те, що в питанні походження та розвитку планет ще рано ставити крапку.

Запитання для самоперевірки

1. За якими характерними ознаками планети-гіганти виділено в окрему групу?

2. Що собою являє Велика Червона Пляма на Юпітері?

3. Чим пояснюється виділення додаткової енергії з надр планет-гігантів?

4. Який український астроном і коли висловив думку, що на супутниках великих планет можуть відбуватись інтенсивні вулканічні процеси?

5. Чому систему Плутон-Харон можна назвати подвійною планетою?

6. З'ясуйте, скільки разом супутників налічується в Сонячній системі. Які з них мають розміри, сумірні з розмірами Місяця?

7. Сформулюйте правило Тиціуса-Боде. Як у відповідності з ним зростає відстань кожної наступної планети від Сонця?

8. Які складові виділяють у будові комети, коли вона проходить поблизу Сонця?

9. У чому полягає різниця між метеором, метеорним тілом (метеороїдом) і метеоритом?

10. Що таке «космічне сміття»?

11. Кільце астероїдів (К а.) поділило планети на внутрішні (орбіти яких всередині К. а.) і зовнішні (їхні орбіти охоплюють К. а.). З'ясуйте, які з планет віднесено до одної і які до іншої групи і зіставте це з поняттями нижні і верхні планети. Визначте, у чому принципова різниця між поняттями нижня і верхня планета, внутрішня і зовнішня планета.

12. Які закономірності будови нашої планетної системи слід пояснити теоретично?

13. У чому полягають основні етапи формування протопланетного диска?

14. Як пояснюється несхожість хімічного складу, розмірів і густин між планетами земної групи і планетами-гігантами?

15. Довгий час існувала гіпотеза про утворення поясу астероїдів внаслідок розпаду гіпотетичної планети Фаетон між орбітою Марса і Юпітера. Подумайте, чи могло так бути насправді?

16. Скільки часу пішло на зростання Землі до її сучасних розмірів?

 


Дата добавления: 2014-12-03; просмотров: 292; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2020 год. (0.027 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты