![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Напряженность электростатического поля. Принцип суперпозиции электрических полей. Теорема Гаусса.Всякий заряд изменяет свойства окружающего пространства - создает в нем электрическое поле. Электрическое поле - одна из форм существования материи, окружающей электрические заряды. Это поле проявляет себя в том, что помещенный в какую-либо его точку электрический заряд оказывается под действием силы. Представление об электрическом поле было введено в науку в 30-х годах XIX столетия английским учеными Майклом Фарадеем. Согласно Фарадею, каждый электрический заряд окружен созданным им электрическим полем, поэтому такой заряд иногда называют зарядом-источником. Заряд, с помощью которого исследуют поле заряда источника, называют пробным зарядом. Для того чтобы сила, действующая на пробный заряд, характеризовала поле в данной точке, пробный заряд должен быть точечным. Точечным зарядом называют заряженное тело, размерами которого можно пренебречь в условиях данной задачи, т.е. размеры которого малы по сравнению с расстояниями до других тел, с которыми он взаимодействует. При этом собственное электрическое поле пробного заряда должно быть столь мало, чтобы оно не изменяло поле заряда - источника. Чем меньше размер заряженного тела и чем слабее его собственное поле по сравнению с полем заряда-источника, тем точнее данное заряженное тело удовлетворяет условию пробного заряда. Электрическое поле распространяется в вакууме со скоростью с= 3·18 Поле неподвижных электрических зарядов - электростатическое. Исследуем с помощью пробного заряда Сила, действующая на пробный заряд в данной точке поля, зависит от величины пробного заряда. Если брать различные пробные заряды, то и сила, действующая на них в данной точке поля, будет различной.
Напряженность электрического поля - это векторная величина, численно равная силе, с которой поле действует на единичный положительный пробный заряд в данной точке поля и сонаправленная с этой силой (рис. 2). Напряженность является основной характеристикой поля и полностью характеризует поле в каждой его точке по величине и направлению. Напряженность поля точечного заряда. Согласно закону Кулона
поэтому Следовательно, напряженность электрического поля точечного заряда
Электрическое поле удобно графически изображать с помощью картины так называемых силовых линий или линий напряженности. Линией напряженности называется линия, касательная к которой в каждой точке совпадает по направлению с вектором напряженности в этой точке. Линии напряженности поля, создаваемого неподвижными зарядами (рис. 3 а,б), всегда начинаются и кончаются на зарядах (или в бесконечности) и никогда не бывают замкнутыми. Более сильное поле изображается более плотно расположенными линиями напряженности. Густота линий выбирается так, чтобы количество линий, пронизывающих единицу поверхности площадки, перпендикулярной к линиям, было равно численному значению вектора
Принцип суперпозиции.
Принцип суперпозиции является опытным фактом, справедливым вплоть до очень сильных полей. Поэтому же закону складываются не только статические, но и быстро меняющиеся электромагнитные поля Потоком
где a- угол между векторами Еп - проекция Просуммировав потоки через все элементарные площадки, на которые разбили поверхность S, получим поток вектора Потоком вектора
Для замкнутой поверхности Теорема Гаусса для электростатического поля в вакууме: Поток вектора напряженности электростатического поля в вакууме через любую замкнутую поверхность прямо пропорционален алгебраической сумме зарядов, охватываемых этой поверхностью. С помощью теоремы Гаусса были получены формулы, определяющие напряженность в ряде частных случаев. Поле бесконечной равномерно заряженной плоскости (рис. 5):
Поверхностная плотность заряда Если поверхность заряжена неравномерно,
Полученный результат справедлив для плоскостей конечных размеров, расстояние между которыми мало по сравнению с их размерами (конденсатор).
Помимо основного вектора
|