КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Технология получения и свойства нанопорошков
Процессы, в результате которых происходит формирование наноструктур – это кристаллизация, рекристаллизация, фазовые превращения, высокие механические нагрузки, интенсивная пластическая деформация, полная или частичная кристаллизация аморфных структур. Выбор метода получения наноматериалов определяется областью их применения, желательным набором свойств конечного продукта. Характеристики получаемого продукта – гранулометрический состав и форма частиц, содержание примесей, величина удельной поверхности – могут колебаться в зависимости от способа получения в весьма широких пределах. Так, в зависимости от условий получения, нанопорошки могут иметь сферическую, хлопьевидную, игольчатую формы, аморфную или мелкокристаллическую структуру. Наноматериалы могут быть получены химическими, физическими, механическими и биологическими методами. Химические методы синтеза нанопорошков Химические методы синтеза включают различные реакции и процессы, в том числе процессы осаждения, термического разложения или пиролиза, газофазных химических реакций, восстановления, гидролиза, электроосаждения. Регулирование скоростей образования и роста зародышей новой фазы осуществляется за счет изменения соотношения количества реагентов, степени пересыщения, а также температуры процесса. Как правило, химические методы являются многостадийными и состоят из различных процессов и реакций. Способ осаждения заключается в осаждении различных соединений металлов из растворов их солей с помощью осадителей. Продуктом осаждения являются высокодисперсные частицы гидроксидов металлов. В качестве осадителя используют растворы щелочей натрия, калия и другие. Этим методом можно получать порошки сферической, игольчатой, чешуйчатой или неправильной формы с размером частиц до 100 нм. Нанопорошки сложного состава получают методом соосаждения. В этом случае в реактор подают одновременно два или более растворов солей металлов и щелочи при заданной температуре. В результате получают гидроксидные соединения нужного состава. Способ гетерофазного взаимодействия осуществляют путем ступенчатого нагрева смесей твердых солей металлов с раствором щелочи с образованием оксидной суспензии и последующим восстановлением металла. Таким способом получают металлические порошки с размером частиц в пределах 10…100 нм. Гель-метод заключается в осаждении из водных растворов нерастворимых металлических соединений в виде гелей. Следующая стадия – восстановление металла. Этот способ применяется для получения порошков железа и других металлов. Способ восстановления и термического разложения – обычно это следующая операция после получения в растворе ультрадисперсных оксидов или гидроксидов. В качестве восстановителей, в зависимости от вида требуемого продукта, используют газообразные восстановители – как правило, водород, оксид углерода или твердые восстановители. Нанопорошки Fe, W, Ni, Co, Cu и ряда других металлов получают восстановлением их оксидов водородом. В качестве твердых восстановителей используют углерод, металлы или гидриды металлов. Таким способом получают нанопорошки Mo, Cr, Pt, Ni и др. Как правило, размер частиц находится в пределах 10...30 нм. Более сильными восстановителями являются гидриды металлов – обычно гидрид кальция. Так получают нанопорошки Zr, Hf, Та, Nb. В ряде случаев нанопорошки получают путем разложения формиатов, карбонатов, карбонилов, оксалатов, ацетатов металлов в результате процессов термической диссоциации или пиролиза. Так, за счет реакции диссоциации карбонилов металлов получают порошки Ni, Mo, Fe, W, Cr. Путем термического разложения смеси карбонилов на нагретой подложке получают полиметаллические пленки. Ультрадисперсные порошки металлов, оксидов, а также смесей металлов и оксидов получают путем пиролиза формиатов металлов. Таким способом получают порошки Mn, Fe, Ca, Zr, Ni, Co, их оксидов и металлооксидных смесей. Физические методы получения нанопорошков Способы испарения (конденсации), или газофазный синтез получения нанопорошков металлов, основаны на испарении металлов, сплавов или оксидов с последующей их конденсацией в реакторе с контролируемой температурой и атмосферой. Фазовые переходы пар–жидкость–твердое тело или пар–твердое тело происходят в объеме реактора или на поверхности охлаждаемой подложки или стенок. Сущность способа состоит в том, что исходное вещество испаряется путем интенсивного нагрева, с помощью газа-носителя подается в реакционное пространство, где резко охлаждается. Нагрев испаряемого вещества осуществляется с помощью плазмы, лазера, электрической дуги, печей сопротивления, индукционным способом, пропусканием электрического тока через проволоку. Возможно также бестигельное испарение. В зависимости от вида исходных материалов и получаемого продукта, испарение и конденсацию проводят в вакууме, в инертном газе, в потоке газа или плазмы. Размер и форма частиц зависят от температуры процесса, состава атмосферы и давления в реакционном пространстве. В атмосфере гелия частицы будут иметь меньший размер, чем в атмосфере аргона – более плотного газа. Таким методом получают порошки Ni, Mo, Fe, Ti, Al. Размер частиц при этом – десятки нанометров. Разновидностью метода является получение наноматериалов путем электрического взрыва проволок (проводников). В этом случае в реакторе между электродами помещают проволоки металла диаметром 0,1...1,0 мм, из которого намечается получение нанопорошка. На электроды подают импульс тока большой силы (104...106 А/мм2). При этом происходит мгновенный разогрев и испарение проволоки. Пары металла разлетаются, охлаждаются и конденсируются. Процесс идет в атмосфере гелия или аргона. Наночастицы оседают в реакторе. Таким способом получают металлические (Ti, Co, W, Fe, Mo) и оксидные (TiO2, Al2O3, ZrO2) нанопорошки с крупностью частиц до 100 нм. Механические методы получения нанопорошков Механические методы получения нанопорошков заключается в измельчении материалов механическим путем в мельницах различного типа – шаровых, планетарных, центробежных, вибрационных, аттриторах и симолойерах. Аттриторы и симолойеры – это высокоэнергетические измельчительные аппараты с неподвижным корпусом – барабаном с мешалками, передающими движение шарам в барабане. Аттриторы имеют вертикальное расположение барабана, симолойеры – горизонтальное. Измельчение размалываемого материала размалывающими шарами в отличие от других типов измельчающих устройств происходит главным образом не за счет удара, а по механизму истирания. Емкость барабанов в установках этих двух типов достигает 400...600 л. Механическим путем измельчают металлы, керамику, полимеры, оксиды, хрупкие материалы. Степень измельчения зависит от вида материала. Так, для оксидов вольфрама и молибдена получают крупность частиц порядка 5 нм, для железа – порядка 10...20 нм. Разновидностью механического измельчения является процесс механического легирования, когда в процессе измельчения происходит взаимодействие измельчаемых материалов с получением измельченного материала нового состава. Так получают нанопорошки легированных сплавов, интерметаллидов, силицидов и дисперсноупрочненных композитов с размером частиц 5...15 нм. Уникальным достоинством способа является то, что за счет взаимодиффузии в твердом состоянии здесь возможно получение сплавов таких элементов, взаимная растворимость которых при использовании жидкофазных методов пренебрежимо мала. Положительной стороной механических способов измельчения является сравнительная простота установок и технологий, возможность измельчать различные материалы и получать порошки сплавов, а также возможность получать материал в большом количестве. К недостаткам метода относятся возможность загрязнения измельчаемого порошка истирающими материалами, а также трудности получения порошков с узким распределением частиц по размерам, сложности регулирования состава продукта в процессе измельчения. При получении наночастиц любым методом проявляется еще одна их особенность – склонность к образованию объединений частиц. Такие объединения называют агрегатами и агломератами. В результате при определении размеров наночастиц необходимо различать размеры отдельных частиц (кристаллитов) и размеры объединений частиц.
|