Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Примеры решения задач. Задача 1. ЭДС источника тока =6 В




Задача 1. ЭДС источника тока =6 В. Наибольшая сила тока, которую может дать источник тока, =5А. Какая наибольшая мощность может выделиться на подключенном к источнику тока резисторе с переменным сопротивлением? Каким при этом будет КПД источника тока и какая мощность будет расходоваться на нагревание самого источника?

Дано: Решение:
= 6 B; = 5 A. Мощность тока на внешнем участке цепи находится по формуле , (1)
= ? =? =? где R – сопротивление резистора при условии очень малого сопротивления подводящих ток проводников. Силу тока I можно найти на основе закона Ома для замкнутой цепи:

(2)

где R и r – сопротивления внешнего и внутреннего участков цепи соответственно.

Подставив формулу (2) в формулу (1), получим:

. (3)

Из формулы (3) видно, что при постоянных величинах и r мощность является функцией одной переменной – внешнего сопротивления R. Известно, что эта функция имеет максимум при условии R = r. В этом можно убедиться, применив общий метод исследования функций на экстремум с помощью производной.

Следовательно,

. (4)

Таким образом, задача сводится к отысканию сопротивления r внутреннего участка цепи (источника тока). Если учесть, что согласно закону Ома (2) для замкнутой цепи наибольшая сила тока Imax будет при внешнем сопротивлении R = 0 (ток короткого замыкания), то

. (5)

Подставив найденное из (5) значение внутреннего сопротивления r в формулу (4), получим:

.

Мощность тока, выделяемая на внешнем участке цепи, является полезной по отношению к полной мощности источника тока, которая находится по формуле и в нашем случае будет равна

. (6)

КПД источника тока равен отношению полезной мощности, выделяемой на внешнем участке цепи, к полной мощности источника тока:

. (7)

В нашем случае

Мощность, теряемую в источнике тока, можно найти по формуле .

В нашем случае: .

Ответ: ; ; .

Задача 2. Электрическая цепь состоит из двух источников тока, трех сопротивлений и амперметра (рис.7.1). В этой цепи R1=100 Ом, R2=50 Ом, R3=20 Ом, ЭДС одного из источников тока 1=2 В. Амперметр регистрирует ток I3=50 мА, идущий в направлении, указанном стрелкой. Определить ЭДС второго источника тока 2. Сопротивлением амперметра и внутренним сопротивлением источников тока пренебречь.

Рис.7.1

Указания: Для расчета разветвленных цепей применяются правила Кирхгофа:

а) – первое правило Кирхгофа;

б) - второе правило.

На основании этих правил можно составить уравнения, необходимые для определения искомых величин (силы тока, сопротивления и ЭДС). Применяя правила Кирхгофа, следует соблюдать следующие указания:

1. Перед составлением уравнений произвольно выбрать: а) направления токов (если они не заданы по условию задачи) и указать их стрелками на чертеже; б) направления обхода контуров (например, по часовой стрелке).

2. При составлении уравнений по первому правилу Кирхгофа считать токи, подходящие к узлу, положительными, а токи, отходящие от узла, отрицательными. Число уравнений, составляемых по первому правилу Кирхгофа, должно быть на единицу меньше числа узлов, содержащихся в цепи.

3. При составлении уравнений по второму правилу Кирхгофа надо считать, что а) произведение силы тока на сопротивление участка контура IкRк входит в уравнение со знаком “плюс”, если направление тока в данном участке совпадает с выбранным направлением обхода контура, в противном случае произведение IкRк входит в уравнение со знаком “минус”, б) ЭДС входит в уравнение со знаком “плюс”, если она повышает потенциал в направлении обхода контура, т.е. если при обходе приходится идти от минуса к плюсу внутри источника тока; в противном случае ЭДС входит в уравнение со знаком “минус”. Число уравнений, составленных по второму правилу Кирхгофа должно быть равно числу независимых контуров, имеющихся в цепи. Для составления уравнений первый контур можно выбирать произвольно. Все последующие контуры следует выбрать таким образом, чтобы в каждый новый контур входила хотя бы одна ветвь цепи, не участвовавшая ни в одном из ранее использованных контуров. Если при решении уравнений, составленных указанным выше способом, получены отрицательные значения силы тока или сопротивления, то это означает, что ток через данное сопротивление в действительности течет в направлении, противоположном произвольно выбранному. При этом числовые значения силы тока будут правильными. Однако в этом случае неверным окажется вычисленное значение сопротивления. Тогда необходимо, изменив на чертеже направление тока в сопротивлении, составить новую систему уравнений и, решив ее, определить искомое сопротивление.

Решение

Выберем направления токов, как они показаны на рисунке, и условимся обходить контуры по часовой стрелке. По первому правилу Кирхгофа для узла F имеем:

I1I2I3 = 0. (1)

По второму правилу Кирхгофа имеем для контура ACDFA: – I1R1I2R2 = – 1 , или после умножения обеих частей равенства на – 1:

2 =? I1R1 + I2R2 = 1 . (2)

Соответственно для контура AFGHA найдем:

I1R1 + I3R3 = 2 . (3)

После подстановки известных числовых значений в формулы (1), (2) и (3) получим: I1I2–0,05=0, 50I1+25I2=1, 100I+0,05·20= 2 .

Перенеся в этих уравнениях неизвестные величины в левые части, а известные – в правые, получим систему уравнений с тремя неизвестными:

Выразим из первого уравнения системы I2 и подставим во второе: .

Подставляя I1 в третье уравнение, получаем =4 В.

Ответ: =4 В.


Поделиться:

Дата добавления: 2014-10-31; просмотров: 223; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2025 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты