КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
INPUT xIF x<0 THEN y=5+x: PRINT y: END IF x<10 THEN y=5: PRINT y: END y=10-0.5*x: PRINT y Задача 3.2. Даны три произвольных числа A, В, С. Составить программу, которая анализирует их и, если сумма первых двух чисел не меньше третьего, а второе число больше первого – выдает сообщение ВЕРНО. Если хотя бы одно из условий не выполняется – то сообщение НЕВЕРНО. Иными словами “ВЕРНО” если A+В>=C и В>A “НЕВЕРНО” – в противном случае На рис. 3.4 и 3.5 представлено решение (блок-схема и программа), полностью адекватное условию. Однако в некоторых случаях решение удобно искать, преобразовав условие на обратное, т.е. “НЕВЕРНО” если A+В<C или В<=A “ВЕРНО” – в противном случае Это позволяет иногда упростить программирование (рис. 3.6). При необходимости выполнять анализ одновременно нескольких условий удобно воспользоваться логическими функциями. Аргументами логических функций являются высказывания, в отношении которых всегда можно сказать, истинны они или ложны. К таким высказываниям относятся математические операции сравнения – равно, больше, меньше и т.д. Так, например, выражение вида X=Y всегда может быть только истинным или только ложным. Рассмотрим важнейшие логические функции (см. таблицу ниже). Функция одного аргумента НЕ истинна тогда и только тогда, когда ложен ее аргумент. То есть значение функции всегда обратно аргументу. Поведение функции полностью описывает таблица. В операторе IF функция И обозначается словом NOT. Например, следующие два оператора полностью идентичны IF X<10 THEN Y=5 IF NOT X>=10 THEN Y=5
Из функций двух аргументов для нас важны И и ИЛИ. Функция И истинна тогда и только тогда, когда истинны все ее аргументы (в программах обозначается словом AND). Функция ИЛИ (OR) истинна тогда, когда истинен хотя бы один из ее аргументов. Если нет скобок, функции вычисляются в такой последовательности: НЕ, И, ИЛИ. В качестве примера снова рассмотрим задачу 3.2 в исходной формулировке. Теперь ее решение сводится практически к одной строке и приведено ниже
|