Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Потенциальная энергия деформации




Внешние силы, приложенные к упругому телу и вызывающие изменение геометрии тела, совершают работу W на соответству­ющих перемещениях. Одновременно с этим в упругом теле накап­ливается потенциальная энергия его деформирования U. При дей­ствии динамических внешних нагрузок часть работы внешних сил превращается в кинетическую энергию движения частиц тела К. Приняв энергетическое состояние системы до момента действия данных сил равным нулю, и в условиях отсутствия рассеивания энергии, уравнение баланса энергии можно записать в следующем виде:

W = U + K. (2.11)

При действии статических нагрузок К = 0, следовательно,

W = U. (2.12)

Это означает, что при статическом нагружении работа внешних сил полностью преобразуется в потенциальную энергию деформа­ции. При разгрузке тела производится работа за счет потенциаль­ной энергии деформации, накопленной телом. Таким образом, уп­ругое тело является аккумулятором энергии. Это свойство упругого тела широко используется в технике, например, в заводных пружи­нах часовых механизмов, в амортизирующих рессорах и др. В слу­чае простого растяжения (сжатия) для вывода необходимых расчет­ных зависимостей потенциальной энергии деформации рассмотрим решение следующей задачи.

На рис. 2.9, а изображен растягиваемый силой Р стержень, удлинение которого соответствует отрезку , ниже показан график изменения величины удлинения стержня в зависимости от силы Р (рис. 2.9, б). В соответствии с законом Гука этот график носит линейный характер.

Пусть некоторому значению силы Р соответствует удлинение стержня . Дадим некоторое приращение силе DР - соответству­ющее приращение удлинения составит . Тогда элементарная работа на этом приращении удлинения составит:

, (2.13)

Рис.2.9

 

вторым слагаемым, в силу его малости, можно пренебречь, и тогда

. (2.14)

Полная работа равна сумме элементарных работ, тогда, при линейной зависимости “нагрузка - перемещение”, работа внешней силы Р на перемещении будет равна площади треугольника ОСВ (рис. 2.9), т.е.

. (2.15)

В свою очередь, когда напряжения и деформации распреде­лены по объему тела V равномерно (как в рассматриваемом случае) потенциальную энергию деформирования стержня можно записать в виде:

. (2.16)

Поскольку, в данном случае имеем, что , и , то

, (2.17)

т.е. подтверждена справедливость (2.12).

С учетом (2.8) для однородного стержня с постоянным попе­речным сечением и при Р = const из (2.17) получим:

. (2.18)

Единицей измерения потенциальной энергии деформации является 1Hм = 1Дж.

 


Поделиться:

Дата добавления: 2015-01-05; просмотров: 128; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты