КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
Структура содержания Интернет-тренажера по дисциплине «Физика» построена на основе преемственности между содержанием этой дисциплины в государственных образовательных стандартах (ГОС) высшего профессионального образования и тестовыми материалами, используемыми в рамках Интернет-тренажеров. Она раскрывает содержание дисциплины, представляя тематическое наполнение отдельных ее разделов (дидактических единиц), и перечень учебных элементов. Выделенные разделы дисциплины (дидактические единицы), их тематическое раскрытие зафиксированы в структуре и положены в основу содержания тестовых заданий банка дисциплины, используемого для работы в рамках системы «Интернет-тренажеры в сфере образования».
Содержание Интернет-тренажера по дисциплине включает код элемента содержания и название элемента содержания (темы задания). Первый разряд в записи кода элемента содержания указывает на номер группы заданий, связанных с уровнем сложности заданий изучаемой дисциплины (1 уровень – для начинающих, 2 – базовый). Второй разряд в записи кода элемента содержания указывает на номер дидактической единицы (раздела) дисциплины, а третий разряд идентифицирует номер темы задания. Например, код элемента содержания 2-01-02 указывает на то, что элемент содержания принадлежит базовому уровню, первой дидактической единице (ДЕ) «Механика» и второй теме в этой ДЕ, которая называется «Динамика поступательного движения». Все коды элементов содержания и наименования элементов содержания распределяются в предложенном порядке для каждой дидактической единицы.
Перечень учебных элементов отражает требования к знаниям и умениям, которые студент должен приобрести в результате освоения дисциплины или отдельных ее разделов.
Содержание Интернет-тренажера по дисциплине
| Перечень учебных элементов
Студент должен:
| Код элемента содержания
| Наименование элемента содержания (тема)
| 1. Механика
| 1-01-01
| Кинематика точки и поступательного движения твердого тела. Динамика поступательного движения
| знать: вектор скорости, вектор ускорения, ускорение при криволинейном движении, тангенциальное, нормальное и полное ускорение, путь и перемещение; законы Ньютона, силу, массу, импульс, силы в механике (тяжести, трения, упругости, вес тела), закон всемирного тяготения, движение по окружности
уметь: применять законы кинематики и динамики в условиях конкретной задачи; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; определять направления векторных величин; анализировать информацию, представленную в виде графика, рисунка, делать выводы о характере изменения искомой величины
| 1-01-02
| Кинематика вращательного движения
| знать: угловое перемещение, угловую скорость, угловое ускорение; связь линейных и угловых величин
уметь: применять законы кинематики вращательного движения в условиях конкретной задачи; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; определять направления векторных величин; анализировать информацию, представленную в виде графика, рисунка, делать выводы о характере изменения искомой величины
| 1-01-03
| Динамика вращательного движения
| знать: момент инерции, момент импульса, момент силы; основной закон динамики вращательного движения
уметь: применять законы динамики вращательного движения в условиях конкретной задачи; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; определять направления векторных величин; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины
| 1-01-04
| Работа. Энергия. Законы сохранения в механике
| знать: импульс тела, кинетическую энергию для поступательного и вращательного движения твердого тела, момент инерции тел простейшей геометрической формы, потенциальную энергию, закон сохранения импульса, закон сохранения момента импульса, закон сохранения и изменения механической энергии, работу силы, мощность, связь работы и изменения энергии
уметь: применять законы сохранения импульса, момента импульса и энергии, определять энергию вращательного движения; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; определять направления векторных величин; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины
| 2-01-01
| Кинематика поступательного и вращательного движения
| знать: перемещение, пройденный путь, вектор линейной скорости, ускорение, тангенциальное и нормальное ускорения, вектор угловой скорости, вектор углового ускорения, связь линейных и угловых величин, связь между различными кинематическими величинами
уметь: применять законы кинематики в условиях конкретной задачи; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; использовать физические формулы для вычисления заданных величин; определять направления векторных величин; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины; использовать математический аппарат (вычисление производных, интегралов, операции с векторами) для решения физических задач
| 2-01-02
| Динамика поступательного движения
| знать:законы Ньютона, сила, масса, импульс; инерциальные и неинерциальные системы отсчета; силы в механике (тяжести, трения, упругости), закон всемирного тяготения, движение по окружности; II закон Ньютона для системы материальных точек, центр масс системы материальных точек, закон движения центра масс
уметь: применять законы динамики в условиях конкретной задачи, определять направления векторных величин; анализировать информацию, представленную в виде графика; использовать математический аппарат (действия с производными, интегрирование) для решения физических задач; применять законы механики в условиях конкретной задачи; находить равнодействующую сил; определять центр масс системы; вычислять импульс силы
| 2-01-03
| Динамика вращательного движения
| знать: момент инерции, момент импульса, момент силы; основной закон динамики вращательного движения; вращательное движение твердого тела вокруг неподвижной оси; моменты инерции некоторых тел вращения, момент инерции тела относительно произвольной оси (теорему Штейнера)
уметь: применять законы динамики вращательного движения в условиях конкретной задачи; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; использовать физические формулы для вычисления заданных величин; определять направления векторных величин; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины; использовать математический аппарат (вычисление производных, интегралов, операции с векторами) для решения физических задач
| 2-01-04
| Работа и энергия
| знать: работу силы, определение работы переменной силы с помощью графика; кинетическую и потенциальную энергию; связь силы и потенциальной энергии; мощность; работу и мощность вращательного движения, кинетическую энергию вращательного движения
уметь: анализировать информацию, представленную в виде графика, рисунка; использовать связь работы силы с изменением кинетической энергии вращательного движения, выводить соотношения для величины работы в условиях конкретной задачи, графически определять работу переменной силы; применять законы механики в условиях конкретной задачи; вычислять работу, кинетическую и потенциальную энергию тела
| 2-01-05
| Законы сохранения в механике
| знать: закон сохранения импульса; закон сохранения момента импульса; закон сохранения механической энергии; интегралы движения в поле центральной силы; потенциальную энергию тела в поле тяготения
уметь: применять закон сохранения механической энергии в условиях конкретной задачи механики, правильно использовать понятие момента инерции для разных тел, применять закон сохранения момента импульса в условиях конкретной задачи механики, применять закон сохранения импульса
| 2-01-06
| Элементы специальной теории относительности
| знать: постулаты СТО; преобразования Лоренца, следствия из преобразований Лоренца: сокращение длины, замедление времени, преобразование скоростей; релятивистский импульс, массу; полную энергию, энергию покоя, кинетическую энергию, релятивистскую формулу связи массы и энергии
уметь: применять следствия из преобразований Лоренца, релятивистскую формулу связи массы и энергии в условиях данной задачи; объяснять природу релятивистских эффектов, устанавливать связь релятивистских эффектов с основными исходными положениями теории относительности; рассчитывать основные релятивистские эффекты
| 2. Молекулярная (статистическая) физика и термодинамика
| 1-02-01
| Внутренняя энергия идеального газа
| знать: внутреннюю энергию идеального газа; уравнение состояния идеального газа; изопроцессы (изотермический, изобарный, изохорный, адиабатный)
уметь: анализировать информацию, представленную графически, определять изменение внутренней энергии газа; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; делать вывод о характере изменения искомой величины
| 1-02-02
| I начало термодинамики
| знать: I начало термодинамики, работу газа, количество теплоты, изменение внутренней энергии при изопроцессах
уметь: анализировать информацию, представленную в виде графика, диаграммы; вычислять работу газа в изопроцессах
| 1-02-03
| Средняя энергия молекул
| знать: степени свободы молекул, закон о равномерном распределении энергии по степеням свободы, теплоемкость газов, внутреннюю энергию как меру кинетической энергии молекул
уметь: определять число степеней свободы молекул, вычислять среднюю кинетическую энергию молекул, теплоемкость газа и отношение теплоемкостей
| 1-02-04
| Цикл Карно
| знать: циклические процессы, цикл Карно, КПД цикла Карно, изменение энтропии, работу при различных изопроцессах
уметь: определять характер изменения энтропии при различных изопроцессах, изменение КПД цикла Карно при изменении его параметров
| 2-02-01
| Распределения Максвелла и Больцмана
| знать: распределение молекул идеального газа по скоростям и компонентам скорости (распределения Максвелла); характеристические скорости; зависимость распределения Максвелла от температуры; барометрическую формулу; влияние температуры на зависимость давления идеального газа от высоты; зависимость концентрации молекул идеального газа от высоты в изотермической атмосфере (распределение Больцмана); влияние температуры на зависимость концентрации молекул идеального газа от высоты
уметь: анализировать информацию представленную графически, диаграммой, рисунком, схемой; делать выводы на основе полученных данных
| 2-02-02
| Средняя энергия молекул
| знать: степени свободы молекул (поступательные, вращательные, колебательные); число степеней свободы одно-, двух - и многоатомных молекул; закон о равномерном распределении энергии по степеням свободы, молярную теплоемкость; теплоемкость газов; среднюю кинетическую энергию одной молекулы
уметь: определять число степеней свободы, вычислять среднюю кинетическую энергию молекул, вычислять молярную теплоемкость при заданном процессе; находить энергию заданной массы газа
| 2-02-03
| Второе начало термодинамики. Энтропия. Циклы
| знать: энтропию; характер изменения энтропии в различных процессах; цикл Карно в координатах (T,S), КПД цикла Карно,коэффициент полезного действия тепловой машины, работу газа в циклическом процессе, термодинамическую формулу изменения энтропии, второе начало термодинамики; уравнение адиабаты в различных координатах
уметь: применять законы термодинамики, применять формулу для коэффициента полезного действия тепловой машины, анализировать полученные результаты, определять изменение энтропии; анализировать информацию, представленную в виде графика; определять КПД цикла Карно при изменении его параметров
| 2-02-04
| Первое начало термодинамики. Работа при изопроцессах
| знать: первое начало термодинамики, количество теплоты; изменение внутренней энергии, теплоемкость в изобарном и изохорном процессах; работу газа за цикл, численно равную площади фигуры, ограниченной диаграммой кругового процесса в координатных осях; внутреннюю энергию как функцию состояния, зависимость работы газа от способа перехода из одного состояния в другое; графическое изображение работы на -диаграмме
уметь: анализировать информацию, представленную в виде графика, диаграммы; вычислять работу в изопроцессах, находить работу газа в циклических процессах; применять первое начало термодинамики
| 3. Электричество и магнетизм
| 1-03-01
| Электростатическое поле. Поле точечного заряда. Принцип суперпозиции
| знать: напряженность и потенциал поля точечного заряда, равномерно заряженной сферической поверхности, равномерно заряженной бесконечной плоскости, силовые линии, эквипотенциальные поверхности, их взаимное расположение, принцип суперпозиции полей
уметь: применять принцип суперпозиции для вычисления напряженности и потенциала системы точечных зарядов, по заданной картине силовых линий делать выводы об изменении величин напряженности и потенциала поля от точки к точке
| 1-03-02
| Работа по перемещению заряда в электростатическом поле
| знать: формулу для нахождения работы по перемещению заряда в электростатическом поле, теорему о кинетической энергии.
уметь: применять эти знания в условиях конкретной задачи, анализировать информацию, представленную в виде графика, рисунка
| 1-03-03
| Законы постоянного тока
| знать: определение силы тока, плотности тока; закон Ома для участка цепи; сопротивление при последовательном и параллельном соединении проводников; закон Джоуля – Ленца; мощность во внешней цепи
уметь: применять эти знания в условиях конкретной задачи, анализировать информацию, представленную в виде графика, рисунка
| 1-03-04
| Магнитное поле системы проводников с токами. Принцип суперпозиции полей
| знать: вектор магнитной индукции; правило нахождения направления вектора магнитной индукции поля прямолинейного длинного проводника с током в произвольной точке поля; принцип суперпозиции полей; силу Ампера; правило нахождения направления силы Ампера
уметь: применять эти знания в условиях конкретной задачи, использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; определять направления векторных величин; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины
| 1-03-05
| Действие магнитного поля на заряды. Сила Лоренца
| знать: выражение для силы Лоренца, ее направление; характер движения частицы в магнитном поле; радиус окружности, по которой движется частица в магнитном поле
уметь: применять эти знания в условиях конкретной задачи, в том числе находить направление силы Лоренца
| 1-03-06
| Явление электромагнитной индукции
| знать: определение магнитного потока, явление электромагнитной индукции, закон Фарадея для электромагнитной индукции, явление самоиндукции, формулу для ЭДС самоиндукции
уметь: извлекать информацию из графика, делать вывод о характере изменения искомой величины, применять знания по теме в условиях конкретной задачи
| 2-03-01
| Электростатическое поле в вакууме
| знать: напряженность поля точечного заряда, принцип суперпозиции полей, связь напряженности электростатического поля и его потенциала, теорему Остроградского-Гаусса для электростатического поля в вакууме; напряженность электрического поля равномерно заряженной бесконечной плоскости, равномерно заряженной длинной нити, равномерно заряженного по объему шара, равномерно заряженной по поверхности сферы; дипольный электрический момент; момент сил, действующий на диполь в электростатическом поле; потенциал поля точечного заряда; формулу работы сил поля по перемещению заряда из одной точки поля в другую
уметь: применять знания в условиях конкретной задачи; анализировать информацию, представленную в виде формул, графиков, рисунков; применять теорему Гаусса в условиях конкретной задачи; находить направление напряженности электростатического поля точечного заряда, диполя, заряженной сферы, бесконечной плоскости в произвольной точке; используя связь напряженности и потенциала, находить направление градиента потенциала; определять знак и величину работы по перемещению заряда в электростатическом поле
| 2-03-02
| Законы постоянного тока
| знать: определение силы тока; закон Ома в дифференциальной форме; закон Ома для замкнутой цепи; плотность тока, связь плотности тока со скоростью упорядоченного движения (дрейфа) носителей; закон Джоуля-Ленца; работу и мощность электрического тока; ЭДС и работу источника тока, мощность во внешней цепи; Правила Кирхгофа
уметь: получать информацию из графика, анализировать зависимость мощности, выделяемой в проводнике, от его сопротивления; находить работу, мощность тока из графиков характеристик электрических цепей; по графику вольтамперной характеристики оценивать величину сопротивления
| 2-03-03
| Магнитостатика
| знать: определение магнитной индукции, принцип суперпозиции полей; закон Био- Савара-Лапласа; силу Ампера, силу Лоренца; магнитный поток; магнитный дипольный момент; момент сил, действующий на диполь в магнитном поле; работу сил поля по перемещению проводника с током магнитное поле; магнитное поле прямолинейного длинного проводника с током (величину и направление), кругового витка с током
уметь: находить направление магнитного поля прямолинейного длинного проводника с током в произвольной точке поля, направление магнитного поля в центре кругового тока, применять принцип суперпозиции полей; находить направление силы Ампера, силы Лоренца
| 2-03-04
| Явление электромагнитной индукции
| знать: явление электромагнитной индукции и самоиндукции, магнитный поток, закон Фарадея для электромагнитной индукции, формулу, определяющую ЭДС самоиндукции, правило Ленца для нахождения направления индукционного тока
уметь: применять эти знания в условиях конкретной задачи; анализировать информацию, представленную в виде графиков; определять знак и величину изменения магнитного потока, пронизывающего проводящий контур; определять условия возникновения ЭДС индукции и самоиндукции, направление индукционного тока; определять размерности физических величина на основе законов электромагнетизма
| 2-03-05
| Электрические и магнитные свойства вещества
| знать: свойства сегнетоэлектриков, характер зависимости поляризованности от напряженности внешнего электрического поля для разных типов диэлектриков; механизмы поляризации диэлектриков; классификацию магнетиков; типы диэлектриков, механизм поляризации полярных диэлектриков, диэлектрическую проницаемость; теорему о циркуляции вектора напряженности магнитного поля (закон полного тока для магнитного поля) в среде; теорему Остроградского-Гаусса для электростатического поля в веществе, вектор электрической индукции
уметь: анализировать информацию, представленную в виде графика
| 2-03-06
| Уравнения Максвелла
| знать: систему уравнений Максвелла в интегральной форме и их физический смысл; законы электростатики и электромагнетизма, обобщением которых являются уравнения Максвелла
уметь: воспринимать информацию, представленную в виде уравнений
| 4. Механические и электромагнитные колебания и волны
| 1-04-01
| Уравнение гармонических колебаний
| знать: уравнение гармонических колебаний, скорость, ускорение при гармонических колебаниях, максимальное значение скорости, ускорения; величины, характеризующие колебания
уметь: получать выражение для скорости, ускорения при гармонических колебаниях из уравнения для координаты материальной точки; устанавливать связь между величинами, характеризующими колебания
| 1-04-02
| Волны
| знать: волны, волновая поверхность, классификация волн: продольные и поперечные, плоские и сферические; электромагнитные волны
уметь: классифицировать волны по виду колебаний частиц среды, по форме волновой поверхности, находить соответствующие компоненты векторов и поля электромагнитной волны
| 1-04-03
| Уравнения свободных и вынужденных колебаний
| знать: дифференциальное уравнение свободных затухающих колебаний, дифференциальное уравнение вынужденных колебаний, собственную и вынужденную частоту колебаний, явление резонанса
уметь: сопоставлять физический процесс (в данном случае колебательное движение) и соответствующее дифференциальное уравнение, из дифференциального уравнения находить параметры колебательной системы
| 1-04-04
| Уравнение волны
| знать: уравнение плоской синусоидальной волны, волновое число, длину волны, скорость распространения волны, круговую частоту, уравнение электромагнитной волны, скорость распространения электромагнитной волны
уметь: из уравнения плоской синусоидальной волны находить параметры, характеризующие волновой процесс; из уравнения электромагнитной волны находить параметры, характеризующие распространение электромагнитной волны; использовать график для определения параметров волны
| 2-04-01
| Свободные и вынужденные колебания
| знать: смещение, скорость, ускорение при гармонических колебаниях; зависимость частоты собственных колебаний от параметров колебательных систем; энергию механических и электрических колебательных систем; уравнение затухающих колебаний и его параметры (коэффициент затухания, время релаксации); вынужденные колебания, процесс установления колебаний; явление резонанса, резонансную частоту; маятники
уметь: анализировать информацию, представленную в виде графика; вычислять параметры колебательных систем; определять энергию колебательной системы
| 2-04-02
| Сложение гармонических колебаний
| знать: метод векторных диаграмм при сложении колебаний одного направления; метод векторных диаграмм для сложения напряжений при вынужденных колебаниях в контуре из последовательно соединенных сопротивления, индуктивности и емкости; законы переменного тока; сложение взаимно перпендикулярных гармонических колебаний
уметь: вычислять амплитуду результирующего колебания (при сложении одинаково направленных колебаний одинаковой частоты), пользуясь методом векторных диаграмм; вычислять амплитуду результирующего напряжения вынужденных колебаний в последовательном контуре
| 2-04-03
| Волны. Уравнение волны
| знать: уравнение плоской синусоидальной волны; параметры, входящие в уравнение волны (частота, циклическая частота, период, длина волны, волновое число), и соотношения между ними; скорость колебаний частиц среды, относительный показатель преломления среды; поперечные и продольные волны; закон преломления волн на границе раздела сред
уметь: определять частоту, циклическую частоту, период, длину волны, волновое число, скорость колебаний частиц среды, фазу волны, относительный показатель преломления двух сред; классифицировать волны; применять закон преломления упругих волн для нахождения скорости распространения волны
| 2-04-04
| Энергия волны. Перенос энергии волной
| знать: электромагнитную волнау; вектор плотности потока энергии электромагнитной волны (вектор Пойнтинга) и упругих волн; единицы измерения объемной плотности энергии и плотности потока энергии; функциональную зависимость объемной плотности энергии
уметь: анализировать информацию, представленную в виде рисунка; находить направление вектора плотности потока энергии электромагнитной волны; определять плотность потока энергии при изменении параметров волны; определять размерность физических величин
| 5. Волновая и квантовая оптика
| 1-05-01
| Волновая природа света
| знать: явления, указывающие на волновую природу света; характеристики световой волны (частоту, длину волны, скорость распространения); поперечность световых волн, поляризацию; электромагнитную теорию света; механизм распространения волн в среде, показатель преломления; законы отражения и преломления, предельный угол полного внутреннего отражения, угол Брюстера
уметь: применять законы отражения и преломления и свойства световых волн для объяснения поведения световых волн на границе раздела сред
| 1-05-02
| Интерференция света. Дифракция света
| знать: явление интерференции, основные интерференционные схемы, кольца Ньютона, условия образования максимумов и минимумов, ширину полос интерференции, радиусы темных и светлых колец Ньютона в проходящем и отраженном свете; явление дифракции, зоны Френеля, дифракционную решетку, природу дифракционных максимумов и минимумов, формулу дифракционной решетки для главных максимумов
уметь: определять разность хода лучей, рассчитывать положение максимумов и минимумов для основных интерференционных схем и ширину полос интерференции, определять условия наблюдения дифракционных максимумов и минимумов и рассчитывать дифракционную картину на решетке
| 1-05-03
| Фотоэффект
| знать: природу фотоэффекта как физического явления, законы Столетова для фотоэффекта, работу выхода электронов, красную границу фотоэффекта, задерживающий потенциал, уравнение Эйнштейна для фотоэффекта
уметь: применять законы фотоэффекта в конкретных задачах, анализировать вольт-амперные характеристики фотоэлементов и определять по ним соответствующие параметры
| 1-05-04
| Тепловое излучение
| знать: характеристики теплового излучения (излучательную способность, поглощательную способность, спектральную плотность энергетической светимости, энергетическую светимость); законы теплового излучения (закон Кирхгофа, закон Стефана – Больцмана, закон смещения Вина, формулу Планка); модели абсолютно черного тела и серого тела
уметь: применять законы теплового излучения в конкретных задачах, определять энергетическую светимость источника излучения и ее зависимость от температуры, анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины
| 2-05-01
| Интерференция и дифракция света
| знать: явление интерференции, условия максимума и минимума при интерференции двух волн; основные интерференционные схемы, условия образования максимумов и минимумов, ширину полос интерференции, радиусы темных и светлых колец Ньютона в проходящем и отраженном свете; метод зон Френеля; явление дифракции, дифракционную решетку, природу дифракционных максимумов и минимумов, формулу дифракционной решетки для главных максимумов
уметь: анализировать информацию, представленную графически; находить разность хода двух волн и использовать приближения при решении задачи, применять метод зон Френеля в условиях конкретной задачи; определять разность хода лучей, рассчитывать положение максимумов и минимумов для основных интерференционных схем и ширину полос интерференции, определять условия наблюдения дифракционных максимумов и минимумов и рассчитывать дифракционную картину на решетке
| 2-05-02
| Поляризация и дисперсия
| знать: явление поляризации света, закон Малюса, характер и степень поляризации света, поляризацию при отражении от диэлектрика, закон Брюстера; дисперсию, нормальную дисперсию, аномальную дисперсию
уметь: применять закон Малюса в условиях конкретной задачи; анализировать информацию, представленную графически, в виде рисунка; определять степень поляризации света, определять характер зависимости показателя преломления от частоты и длины волны света
| 2-05-03
| Тепловое излучение. Фотоэффект
| знать: тепловое излучение, его характеристики, графическое определение энергетической светимости; законы теплового излучения (формулу Рэлея – Джинса, формулу Планка, закон Стефана – Больцмана, закон смещения Вина)
уметь: анализировать информацию, представленную в виде графика; применять законы теплового излучения в условиях конкретной задачи; анализировать зависимость характеристик теплового излучения от отдельных параметров
| 2-05-04
| Эффект Комптона. Световое давление
| знать: явление светового давления, коэффициент отражения для зеркальной и абсолютно черной поверхности, эффект Комптона; корпускулярные свойства света, энергию и импульс фотона
уметь: применять формулу светового давления в условиях конкретной задачи на качественном уровне; применять закон сохранения импульса в эффекте Комптона, применять формулу Комптона для изменения длины волны при рассеянии в условиях конкретной задачи
| 6. Квантовая физика и физика атома
| 1-06-01
| Корпускулярно-волновой дуализм свойств частиц вещества. Волны де Бройля
| знать: длину волны де Бройля, соотношение масс электрона и протона, кинетическую энергию, корпускулярно-волновой дуализм свойств вещества, границы применимости законов классической физики
уметь: применять формулу де Бройля, положение о корпускулярно-волновом дуализме свойств вещества в условиях конкретной задачи
| 1-06-02
| Явление радиоактивности
| знать: период полураспада; закон радиоактивного распада; активность
уметь: определять долю нераспавшихся радиоактивных ядер через период полураспада; анализировать информацию, представленную графически; узнавать словесную формулировку определения физической величины
| 1-06-03
| Природа радиоактивных излучений
| знать: -, -, -излучения, свойства радиоактивного излучения
уметь: определять вид радиоактивного излучения по характеризующим его свойствам, направление излучения в магнитном поле, вид излучения в ядерных реакциях
| 1-06-04
| Состав атомного ядра
| знать: состав ядра, массовые и зарядовые числа, закон сохранения массового и зарядового числа
уметь: определять состав ядер неизвестных элементов в ядерных реакциях
| 2-06-01
| Спектр атома водорода. Правило отбора
| знать: квантовые числа, определяющие состояние электрона в атоме водорода; правило отбора по орбитальному квантовому числу; сериальные формулы спектра атома водорода
уметь: применять знания в конкретной задаче; анализировать информацию, представленную в виде диаграммы, вычислять частоты переходов, находить максимальные и минимальные частоты спектральных серий водорода
| 2-06-02
| Дуализм свойств микрочастиц. Соотношение неопределенностей Гейзенберга
| знать: корпускулярно-волновой дуализм свойств частиц вещества, формулу де Бройля; соотношение неопределенностей Гейзенберга
уметь: применять знания в конкретной задаче; вычислять длину волны де Бройля, пользуясь соотношением неопределенностей, вычислять неопределенности физических величин
| 2-06-03
| Уравнения Шредингера (общие свойства)
| знать: общий вид стационарного уравнения Шредингера, выражение для потенциальной энергии микрочастицы в том или ином потенциальном поле; вид уравнения Шредингера для различных квантово механических задач (электрон в одномерном и трехмерном потенциальном ящике, линейный гармонический осциллятор, электрон в атоме водорода); физический смысл -функции, являющейся решением уравнения Шредингера
уметь: применять знания в конкретной задаче
| 2-06-04
| Уравнение Шредингера (конкретные ситуации)
| знать: плотность вероятности пребывания частицы в некоторой точке, вероятность обнаружения частицы в некоторой области пространства, геометрический смысл интеграла; прохождение частицы через потенциальный барьер по классическим и квантово механическим представлениям; физический смысл квадрата модуля -функции, собственные функции электрона в одномерном потенциальном ящике с бесконечно высокими стенками
уметь: применять знания в конкретной задаче; находить вероятность обнаружения частицы в различных областях ящика для состояний с тем или иным значением главного квантового числа
| 7. Элементы ядерной физики и физики элементарных частиц
| 2-07-01
| Ядро. Элементарные частицы
| знать: уровень элементарных частиц, названия и обозначения элементарных частиц, основные характеристики элементарных частиц, кварковый состав нейтрона и протона, состав ядра, свойства ядерных сил, условия устойчивости ядер
уметь: применять законы сохранения массового и зарядового чисел в условиях конкретной задачи; определять уровень элементарных частиц; использовать основные характеристики элементарной частицы для ее определения
| 2-07-02
| Ядерные реакции
| знать: радиоактивные превращения, закон радиоактивного распада, период полураспада, постоянную распада, активность; законы сохранения массового числа и зарядового числа, свойства -частиц и -частиц, названия и обозначения элементарных частиц, виды радиоактивных -распадов; энергию связи ядра
уметь: применять законы сохранения массового и зарядового чисел в условиях конкретной реакции, применять закон радиоактивного распада в конкретной задаче; определять энергию связи ядра; анализировать информацию, представленную графически
| 2-07-03
| Законы сохранения в ядерных реакциях
| знать: закон сохранения электрического, лептонного, барионного заряда, спинового момента импульса при превращениях элементарных частиц
уметь: применять законы сохранения электрического, лептонного, барионного заряда, спинового момента импульса в условиях конкретной задачи
| 2-07-04
| Фундаментальные взаимодействия
| знать: основные характеристики фундаментальных взаимодействий; типы фундаментальных взаимодействий: гравитационное, электромагнитное, сильное, слабое; частицы, участвующие во взаимодействиях различных типов; переносчики фундаментальных взаимодействий, обменный характер фундаментальных взаимодействий; законы сохранения
уметь: использовать законы сохранения в условиях конкретной задачи, использовать основные характеристики для определения вида фундаментального взаимодействия
|
|