Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Упругость насыщенных газов




Читайте также:
  1. II.4. Классификация нефтей и газов по их химическим и физическим свойствам
  2. Адсорбция из смеси газов
  3. В нефтегазовом производстве
  4. Вещественный состав природных УВ газов. Метод газовой хромотографии.
  5. Влияние времени приложения напряжения на электрическую прочность газовой изоляции (вольт-секундная характеристика — ВСХ)
  6. Возбудители газовой анаэробной инфекции. Характеристика их свойств. Патогенез заболевания. Микробиологический диагноз. Специфическая профилактика и терапия.
  7. Вопрос. Вещественный состав нефти и природных газов. Основные свойства и промышленные классификации нефти(Билет№6)
  8. Время защитного действия по СДЯВ для гражданских противогазов ГП-7, ГП-5, ГП-5М (мин.)
  9. Вязкость газов
  10. Вязкость газов

Упругость насыщенных паров углеводородов характеризует то давление, при котором газ начинает конденсироваться и переходить в жидкое состояние. У индивидуальных углеводородов в чистом виде упругость паров (Q) есть функция только температуры: Q =ƒ (Т). Величина упругости насыщенных паров углеводородов повышается с ростом температуры, и она тем выше, чем ниже плотность углеводорода. Аналогично с ростом молекулярной массы углеводорода, величина упругости насыщенный паров углеводородов уменьшается при равных температурах (рис. 2.11).

 

 

Рис. 2.11. Кривые упругости насыщенных паров чистых углеводородов:

1. – метан; 2. – этан; 3. – пропан; 4. – изобутан; 5. – бутан; 6. – изопентан; 7. – пентан; 8. – изогексан; 9. – гексан; 10. – изогептан; 11. – гептан; 12. – октан; 13. – нонан; 14. – декан

 

Зависимость упругости пара от температуры: Q =ƒ (Т) – нелинейная функция. Для ее линеаризации шкала упругости пара принята логарифмической, и это создает удобства для пересчета величины упругости пара при нужной температуре. Анализ зависимостей представленных на рис. 2.11 свидетельствует, что давление паров метана наибольшее. При нормальных условиях его нельзя превратить в жидкость (пунктирная линия), так как его критическая температура (Ткр.) = – 82,4о С (190,75 К).

На рис. 2.12, а изображены зависимости объёма жидкого и парообразного пропана. При сжатии от точки М до точки А имеется перегретый (ненасыщенный) пар, зависимость объёма жидкости от давления при конкретной температуре имеет гиперболическую форму.

 

 

Рис. 2.10. Зависимости давления от объёма и температуры (а) и кривая упругости насыщенных паров (б) при температурах, К: 1. – 283; 2. – 293; 3. – 303; 4. – 313; 5. – 323.

 

В точке А пар становится насыщенным, а при дальнейшем изменении объёма (участок АВ) он постепенно переходит в жидкость при неизменном давлении. В точке В заканчивается переход пара в жидкость. При дальнейшем сжатии пара будет резко повышаться давление при почти неизменном объёме. Горизонтальный участок АВ соответствует неизменности давления в процессе конденсации паровой фазы в жидкую фазу. Величина этого давления и есть упругость насыщенного пара газового компонента при данной температуре. Чем ближе значение температуры, при которой измеряется упругость насыщенного пара газового компонента к значению критической температуре, тем короче горизонтальный участок. На основе полученных данных строят кривую упругости насыщенных паров, представляющую зависимость давления от от температуры испарения данной жидкости (рис. 2. 12, б).



У смеси углеводородов упругость паров является функцией и температуры и общего давления смеси: Q = ƒ (Т, Рсм.). Величина её зависит от упругости паров отдельных компонентов при данной температуре и от их мольных концентраций. Общее давление смеси влияет на упругость паров каждого компонента и это влияние учитывается по закону Рауля:

 

Р = ∑ рi и (2.39)

 

где Р – общее давление;

рi – парциальное давление i-го компонента;

Qi – упругость паров i-го компонента;

Nxi – мольная доля i-го компонента в жидкости.

Упругость паров смеси компонентов повышается с увеличением общего давления. Это влияние ничтожно при низких давлениях (≈ до 1 МПа), а при высоких давлениях упругость паров резко увеличивается.

 




Дата добавления: 2014-10-31; просмотров: 107; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты