КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
II. Основные этапы развития физики Становление физики (до 17 в.). ⇐ ПредыдущаяСтр 4 из 4 Физ. явления окружающего мира издавна привлекали внимание людей. Попытки причинного объяснения этих явлений предшествовали созданию Ф. в совр. смысле этого слова. В греко-римском мире (6 в. до н. э.- 2 в. н. э.) впервые зародились идеи об атомном строении вещества (Демокрит, Эпикур, Лукреций), была разработана геоцентрич. система мира (Птолемей), установлены простейшие законы статики (правило рычага), открыты закон прямолинейного распространения и закон отражения света, сформулированы начала гидростатики (закон Архимеда), наблюдались простейшие проявления электричества и магнетизма. Итог приобретённых знаний в 4 в. дон. э. был подведён Аристотелем. Физика Аристотеля включала отдельные верные положения, но в то же время в ней отсутствовали многие прогрессивные идеи предшественников, в частности атомная гипотеза. Признавая значение опыта, Аристотель не считал его гл. критерием достоверности знания, отдавая предпочтение умозрит. представлениям. В средние века учение Аристотеля, канонизированное церковью, надолго затормозило развитие науки. Наука возродилась лишь в 15-16 вв. в борьбе со схоластизированным учением Аристотеля. В сер. 16 в. Н. Коперник выдвинул гелиоцентрическую систему мира и положил начало освобождению естествознания от теологии. Потребности произ-ва, развитие ремёсел, судоходства и артиллерии стимулировали науч. исследования, опирающиеся на опыт. Однако в 15-16 вв. экспериментальные исследования носили в основном случайный характер. Лишь в 17 в. началось систематич. применение экспериментального метода в Ф., и это привело к созданию первой фундаментальной физ. теории - классич. механики Ньютона. Формирование физики как науки (нач. 17 - кон. 18 вв.). Развитие Ф. как науки в совр. смысле этого слова берёт начало с трудов Г. Галилея (1-япол. 17 в.), к-рый понял необходимость математич. описания движения. Он показал, что воздействие на данное тело окружающих тел определяет не скорость, как считалось в механике Аристотеля, а ускорение тела. Это утверждение представляло собой первую формулировку закона инерции. Галилей открыл принцип относительности в механике (см. Галилея принцип относительности), доказал независимость ускорения свободного падения тел от их плотности и массы, обосновывал теорию Коперника. Значительные результаты были получены им и в др. областях Ф. Он построил зрительную трубу с большим увеличением и сделал с её помощью ряд астрономич. открытий (горы на Луне, спутники Юпитера и др.). Количеств. изучение тепловых явлений началось после изобретения Галилеем первого термометра. 1. Основные этапы развития химии При изучении истории развития химии возможны два взаимно дополняющих подхода: хронологический и содержательный. При хронологическом подходе историю химии принято подразделять на несколько периодов. Следует учитывать, что периодизация истории химии, будучи достаточно условной и относительной, имеет скорее дидактический смысл. При этом на поздних этапах развития науки в связи с её дифференциацией неизбежны отступления от хронологического порядка изложения, поскольку приходится отдельно рассматривать развитие каждого из основных разделов науки. Как правило, большинство историков химии выделяют следующие основные этапы её развития:[3] 1. Предалхимический период: до III в. н.э. В предалхимическом периоде теоретический и практический аспекты знаний о веществе развиваются относительно независимо друг от друга. Происхождение свойств вещества рассматривает античная натурфилософия, практические операции с веществом являются прерогативой ремесленной химии. 2. Алхимический период: III – XVI вв. Алхимический период, в свою очередь, разделяется на три подпериода:[4] александрийскую, арабскую европейскую алхимию. Алхимический период – это время поисков философского камня, считавшегося необходимым для осуществления трансмутации металлов. В этом периоде происходит зарождение экспериментальной химии и накопление запаса знаний о веществе; алхимическая теория, основанная на античных философских представлениях об элементах, тесно связана с астрологией и мистикой. Наряду с химико-техническим "златоделием" алхимический период примечателен также и созданием уникальной системы мистической философии. 3. Период становления (объединения): XVII – XVIII вв. В период становления химии как науки происходит её полная рационализация. Химия освобождается от натурфилософских и алхимических взглядов на элементы как на носители определённых качеств. Наряду с расширением практических знаний о веществе начинает вырабатываться единый взгляд на химические процессы и в полной мере использоваться экспериментальный метод. Завершающая этот период химическая революция окончательно придаёт химии вид самостоятельной науки, занимающейся экспериментальным изучением состава тел. 4. Период количественных законов (атомно-молекулярной теории): 1789 – 1860 гг. Период количественных законов, ознаменовавшийся открытием главных количественных закономерностей химии – стехиометрических законов, и формированием атомно-молекулярной теории, окончательно завершает превращение химии в точную науку, основанную не только на наблюдении, но и на измерении. 5. Период классической химии: 1860 г. – конец XIX в. Период классической химии характеризуется стремительным развитием науки: создаётся периодическая система элементов, теория валентности и химического строения молекул, стереохимия, химическая термодинамика и химическая кинетика; блестящих успехов достигают прикладная неорганическая химия и органический синтез. В связи с ростом объёма знаний о веществе и его свойствах начинается дифференциация химии – выделение её отдельных вет
вей, приобретающих черты са
Бенджамин Франклин изображен на любимой многими людьми купюре номиналом в 100 долларов США.
Абу Наср аль-Фараби (870-950) изображен на купюре в 1 тенге, Казахстан. Ученый во многих областях, включая философию, языковедение, логику и др. Он также написал о природе науки и приводил доводы в пользу существования вакуума.
Нильс Бор (1885-1962) изображен на купюре в 500 крон, Дания. Бор был один из главных архитекторов квантовой теории. Он создал первую квантовую модель атома и играл главную роль в развитии современной интерпретации квантовой теории.
Кристиан Биркланд (1867-1917) изображен на купюре в 200 крон, Норвегия. Биркланд был пионером в изучении магнитного поля земли и северного сияния.
Пьер и Мария Кюри - купюра в 500 франков, Франция, 1994. Единственная в мире банкнота с изображением двух ученых физиков сразу.
Английская валюта 1993 года - купюра в 20 фунтов. Изображен Майкл Фарадей.
Карл Фредерик Гаусс (10 марок, Германия, 1993).
Николай Коперник - 1000 золотых, Польша, 1982.
Леонард Эйлер - 10 франков. Швейцарская купюра 1979-1990гг.
Мария Склодовская-Кюри - 20000 золотых, Польша.
Виктор Амбарцумян - 100 драм, Армения, 1998.
Кристиан Гюйгенс - 25 гульденов, Нидерланды, 1955.
Альберт Эйнштейн - 5 шекелей, Израиль.
Никола Тесла - 5 новых динаров, СР Югославия, 1994.
Никола Тесла - 500 динаров, Югославия, 1970.
Блез Паскаль - 500 франков, Франция, 1990.
Нильс Хенрик Абель - 500 крон, Норвегия, 1982.
Галилео Галилей - 2000 лир, Италия, 1973, 1976.
Гульельмо Маркони - 2000 лир, Италия, 1990.
Исаак Ньютон - 1 фунт, Англия, 1990.
Эрнест Резерфорд - 100 долларов, Новая Зеландия.
Эрвин Шредингер - 1000 шиллингов, Австрия, 1983. мостоятельных наук.
|