КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Числовые последовательности. Билеты по математическому анализуБилеты по математическому анализу Содержание: Основные понятия матиматического анализа Грани числовых множеств Числовые последовательности Сходящиеся и расходящиеся последовательности Свойства сходящихся последовательностей Теорема “Об единственности пределов” Теорема “Сходящаяся последовательность ограничена” Теорема “О сходимости монотон. последовательности” Экспонента или число е Функции одной переменной Обратные функции Принцип вложенных отрезков Предел функции в точке Свойства предела функции в точке Односторонние пределы функции в точке Предел и непрерывность функции Предел. Односторонний предел. Пределы функции на бесконечности Два замечательных предела Б/м функции и их сравнения Непрерывные функции. Непрерывность. Классификация точки разрыва Непрывность функции Теорема Вейерштрасса Дифференцирование функций Пр-ные и дифференциалы высоких порядков Теорема Ферма Теорема Ролля Теорема Логранджа Теорема Коши Правило Лопиталя Непрерывность и дифференцируемость Выпуклые и вогнутые функции Точки перегиба Выпуклость и вогнутость. Гладкая функция Эластичность функций Применение 1й пр-ной в исследдовании функций Теорема Ферма Теорема Коши Интервалы монотонности функции Теорема Логранджа. Теорема Ролля Теорема Тейлора Теорема Коши Правило Лопиталя. Производная обратной Функции Теорема Больцано-Вейерштрасса Теорема Больцано-Коши Теорема Вейерштрасса Осн. понятия Грани числовых мн-в Числовые последовательности Непр. ф-ции на пр-ке 1. Осн. понятия Мат.модель – любой набор кр-ний; неравенств и иных мат. Соотношений, которая в совокупности описывает интересующий нас объект. Мн-во вещест. чисел разбивается: на рационал. и иррац. Рац. – число, которое можно представить в виде p/q где p и q – цел. числа. Иррац. – всякое вещественное число, которое не явл. рационал. Любое вещ. число можно представить в виде бесконеч. десят. Дроби а, а1,а2…аn… где а –люб. число, а а1, а2 … аn числа, приним. целые знач. Некоторые числовые множества. Мн-ва – первичное понятие, на уровне здравого смысла, его не возможно точно определить. Для описания мн-в единая символика, а именно, если в мн-во А входят только эл. х, которые обладают некоторым св-вом S(x), то тогда мн-во А описывается А={х½ вып-ся усл S(x)}. Подмн-ва – если А и В 2 мн-ва и все эл-ты мн-ва А сод-ся в В, то А наз-ся подмн-вом В, А В, если в В сод-ся эл-ты отличные от эл-тов мн-ва А, то В строго шире А, то А наз-ся собственным подмн-вом В. АÌВ. А=В- мн-ва совпадают. Операции с мн-воми А В={х!х принадл. либо А, либо В} – обьединение мн-в А и В. АÇ В={х½хÎА и хÎВ} пересечение мн-в А и В. А\ В={х½хÎА, но хÏВ}дополн. к м-ву В во мн-ве А Числовые мн-ва R,N,Z,Q - стандартные обозначения мн-в на числ. прямой. (а,в)= {х½а<х<в} – интервал из R (открытый промежуток, т.к. не содержит границ) [а,в] – замкнутый промежуток сод. гранич. т-ки. (а,в] – полуинтервал. Окрестностью т-ки х наз-ся любой интервал содержащий т-ку х, необязательно симметричную. 2. Грани числовых мн-в Пусть Х – непустое мн-во веществ. чисел. Мн-во Х назся огран. сверху(снизу), если сущ-ет число с такое, что для любого х Х вып-ся неравенство с³х(х³с). Число с наз-ся верхн.(нижн.) гранью мн-ва Х. Мн-во, огран. сверху и снизу наз-ся ограниченым Если мн-во имеет 1 верхнюю грань то она имеет их бесчисленное мн-во. Пример X=R+ - ограничено снизу, но не сверху, значит не ограничено. Точные грани числовых мн-в Пусть мн-во Х ограничено сверху, если это мн-во содержит макс число, т.е. наименьшую из своих верхних граней, то это число назся макс мн-ва Х и обозначается Х*=maxX. Если мн-во содержит мин число Х* , то оно min мн-ва Х Пример Х=[0,1) то max[0,1) не $. min [0,1)=0 Число Х* наз-ся точной верхн. гранью, мн-ва Х, если во-первых оно явл. верхн. гранью этого мн-ва, а во-вторых при сколь угодном уменьшении Х* получ. число перестает быть верх. гранью мн-ва. Верхн. грань – supX=x*, а нижн. грань infX=x* Теорема. Любое непустое ограниченное сверху (снизу) числ. мн-во имеет точную верх(ниж) грань. Таким образом у огран. мн-ва обе грани $, док-во основано на непрерывности мн-ва действит. чисел. 3. Числовые последовательности Если для каждого нат. числа n определено некоторое правило сопоставляющее ему число xn, то мн-во чисел х1,х2, … ,хn, … наз-ся числовой последовательностью и обозначается {xn}, причем числа образующие данную посл-ть наз-ся ее эл-ми, а эл-т хn общим эл-том посл-ти . !Порядок следования эл-тов оч. важен, перестановка хотя бы 2-х эл-тов приводит к др. посл-ти. Основные способы задан. посл-ти: а) явный, когда предъявляется ф-ла позволяющая по заданному n вычислить любой эл-т n, т.е. xn=f(n), где f- некоторая ф-ция нат. эл-та. б) неявный, при котором задается некоторое рекуррентное отношение и несколько первых членов посл-ти. Пример: а) xn=5n x1=5, x2=10 б) x1=-2 xn=4n-1 –3, n=2,3… х2=-11, х3=-47
|