КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Дыхательный рефлекс
Дыхательный рефлекс представляет собой координацию костей, мышц и сухожилий для воспроизведения дыхания. Часто получается так, что нам приходится дышать против своего тела в том случае, когда мы не получаем нужного объема воздуха. Пространство между ребрами (интеркостальноепространство) и межкостные мышцы у многих людей не такие подвижные как следовало бы. Процесс дыхания являет собой комплексный процесс, который вовлекает весь организм. Существует несколько дыхательных рефлексов: Рефлекс спадения — активация дыхания в результате спадения альвеол. Рефлекс раздувания — один из многочисленных нервных и химических механизмов, регулирующих дыхание и проявляющийся через рецепторы растяжения легких. Рефлекс парадоксальный — случайные глубокие вдохи, доминирующие над обычным дыханием, возможно, связанные с раздражением рецепторов в начальных фазах развития микроателектазов. Легочный сосудистый рефлекс — поверхностное тахипноэ в сочетании с гипертонией малого круга кровообращения. Рефлексы раздражения — кашлевые рефлексы, возникающие при раздражении субэпителиальных рецепторов в трахее и бронхах и проявляющиеся рефлекторным закрытием голосовой щели и бронхоспазмом; рефлексы чихания — реакция на раздражение слизистой носа; изменение ритма и характера дыхания при раздражении болевых и температурных рецепторов. На активность нейронов дыхательного центра выраженное влияние оказывают рефлекторные воздействия. Различают постоянные и непостоянные (эпизодические) рефлекторные влияния на дыхательный центр. Постоянные рефлекторные влияния возникают в результате раздражения рецепторов альвеол (рефлекс Геринга – Брейера), корня легкого и плевры (пульмоторакальный рефлекс), хеморецепторов дуги аорты и каротидных синусов (рефлекс Гейманса - прим. biofile.ru), механорецепторов указанных сосудистых областей, проприорецепторов дыхательных мышц. Наиболее важным рефлексом этой группы является рефлекс Геринга–Брейера. В альвеолах легких заложены механорецепторы растяжения и спадения, являющиеся чувствительными нервными окончаниями блуждающего нерва. Рецепторы растяжения возбуждаются при обычном и максимальном вдохе, т. е. любое увеличение объема легочных альвеол возбуждает эти рецепторы. Рецепторы спадения становятся активными только в условиях патологии (при максимальном спадении альвеол). В экспериментах на животных установлено, что при увеличении объема легких (вдувание в легкие воздуха) наблюдается рефлекторный выдох, выкачивание же воздуха из легких приводит к быстрому рефлекторному вдоху. Указанные реакции не возникали при перерезке блуждающих нервов. Следовательно, нервные импульсы в центральную нервную систему поступают по блуждающим нервам. Рефлекс Геринга – Брейера относится к механизмам саморегуляции дыхательного процесса, обеспечивая смену актов вдоха и выдоха. При растяжении альвеол во время вдоха нервные импульсы от рецепторов растяжения по блуждающему нерву идут к экспираторным нейронам, которые возбуждаясь, тормозят активность инспираторных нейронов, что приводит к пассивному выдоху. Легочные альвеолы спадаются, и нервные импульсы от рецепторов растяжения уже не поступают к экспираторным нейронам. Активность их падает, что создает, условия для повышения возбудимости инспипараторной части дыхательного центра и активного вдоха. Кроме того, активность инспираторных нейронов повышается при нарастании концентрации углекислого газа в крови, что также способствует осуществлению акта вдоха. Таким образом, саморегуляция дыхания осуществляется на основе взаимодействия нервного и гуморального механизмов регуляции активности нейронов дыхательного центра. Пульмоторакальный рефлекс возникает при возбуждении рецепторов, заложенных в легочной ткани и плевре. Проявляется этот рефлекс при растяжении легких и плевры. Рефлекторная дуга замыкается на уровне шейных и грудных сегментов спинного мозга. Конечным эффектом рефлекса является изменение тонуса дыхательной мускулатуры, благодаря чему происходит увеличение или уменьшение среднего объема легких. Непостоянные рефлекторные влияния на активность дыхательных нейронов связаны с возбуждением разнообразных по своим функциям экстеро- и интерорецепторов. К непостоянным рефлекторным воздействиям, оказывающим влияние на активность дыхательного центра, относятся рефлексы, возникающие при раздражении рецепторов слизистой оболочки верхних дыхательных путей, носа, носоглотки, температурных и болевых рецепторов кожи, проприорецепторов скелетных мышц, интерорецепторов. Так, например, при внезапном вдыхании паров аммиака, хлора, сернистого ангидрида, табачного дыма и некоторых других веществ происходит раздражение рецепторов слизистой оболочки носа, глотки, гортани, что приводит к рефлекторному спазму голосовой щели, а иногда даже мускулатуры бронхов и рефлекторной задержке дыхания. При раздражении эпителия дыхательных путей накопившейся пылью, слизью, а также попавшими химическими раздражителями и инородными телами наблюдаются чиханье и кашель. Чиханье возникает при раздражении рецепторов слизистой оболочки носа, а кашель – при возбуждении рецепторов гортани, трахеи, бронхов. Защитные дыхательные рефлексы (кашель, чихание) возникают при раздражении слизистых оболочек дыхательных путей. При попадании аммиака происходит остановка дыхания и полностью перекрывается голосовая щель, рефлекторно сужается просвет бронхов. Раздражение температурных рецепторов кожи, в частности холодовых, приводит к рефлекторной задержке дыхания. Возбуждение болевых рецепторов кожи, как правило, сопровождается учащением дыхательных движений. Возбуждение проприорецепторов скелетных мышц обусловливает стимуляцию акта дыхания. Повышенная активность дыхательного центра в этом случае является важным приспособительным механизмом, обеспечивающим увеличенные потребности организма в кислороде при мышечной работе. При возбуждении механорецепторов сосудистых рефлексогенных зон (дуга аорты, каротидные синусы) в результате изменения величины артериального давления наблюдаются сдвиги в активности дыхательного центра. Так, повышение артериального давления сопровождается рефлекторной задержкой дыхания, понижение приводит к стимуляции дыхательных движений. Таким образом, нейроны дыхательного центра чрезвычайно чувствительны к воздействиям, обусловливающим возбуждение экстеро-, проприо- и интерорецепторов, что приводит к изменению глубины и ритма дыхательных движений в соответствии с условиями жизнедеятельности организма. На активность дыхательного центра оказывает влияние коры головного мозга. Регуляция дыхания корой больших полушарий имеет свои качественные особенности. В опытах с прямым раздражением электрическим током отдельных областей коры головного мозга было показано выраженное влияние ее на глубину и частоту дыхательных движений. Результаты исследований М. В. Сергиевского и его сотрудников, полученные при непосредственном раздражении различных участков коры больших полушарий электрическим током в острых, полухронических и хронических опытах (вживленные электроды), свидетельствуют о том, что нейроны коры не всегда оказывают однозначное влияние на дыхание. Конечный эффект зависит от ряда факторов, главным образом от силы, продолжительности и частоты применяемых раздражений, функционального состояния коры головного мозга и дыхательного центра. Для оценки роли коры головного мозга в регуляции дыхания большое значение имеют данные, полученные с помощью метода условных рефлексов. Если у человека или животных звук метронома сопровождать вдыханием газовой смеси с повышенным содержанием углекислого газа, то это приведет к увеличению легочной вентиляции. Через 10…15 сочетаний изолированное включение метронома (условный сигнал) вызовет стимуляцию дыхательных движений – образовался условный дыхательный рефлекс на избранное количество ударов метронома в единицу времени. Учащение и углубление дыхания, которые наступают до начала физической работы или спортивных состязаний, также осуществляются по механизму условных рефлексов. Эти изменения в дыхательных движениях отражают сдвиги в активности дыхательного центра и имеют приспособительное значение, способствуя подготовке организма к выполнению работы, требующей большой затраты энергии и усиления окислительных процессов. По мнению М.Е. Маршака, корковая: регуляция дыхания обеспечивает необходимый уровень легочной вентиляции, темп и ритм дыхания, постоянство уровня углекислого газа в альвеолярном воздухе и артериальной крови. 36.Роль углекислого газа в регуляции дыхания. Опыт Фредерика показывает, что деятельность дыхательного центра изменяется при изменении напряжения СО2 и О2 в крови. Рассмотрим влияние на дыхание каждого из этих газов в отдельности. Значение напряжения углекислого газа в крови в регуляции дыхания. Повышение напряжения углекислого газа в крови вызывает возбуждение дыхательного центра, приводящее к увеличению вентиляции легких, а понижение напряжения углекислого газа в крови угнетает деятельность дыхательного центра, что приводит к уменьшению вентиляции легких. Роль углекислого газа в регуляции дыхания доказана Холденом в опытах, в которых человек находился в замкнутом пространстве небольшого объема. По мере того как во вдыхаемом воздухе уменьшается содержание кислорода и увеличивается содержание углекислого газа, начинает развиваться диспноэ. Если же поглощать выделяющийся углекислый газ натронной известью, содержание кислорода во вдыхаемом воздухе может снизиться до 12%, причем заметного увеличения легочной вентиляции не наступает. Таким образом, увеличение объема вентиляции легких в этом опыте обусловлено повышением содержания во вдыхаемом воздухе углекислого газа. В другой серии экспериментов Холден определял объем вентиляции легких и содержание углекислого газа в альвеолярном воздухе при дыхании газовой смесью с разным содержанием углекислого газа. Полученные результаты приведены в таблице 1. Таблица 1. Объем вентиляции легких и содержание углекислого газа в альвеолярном воздухе
Данные, приведенные в таблице 1, показывают, что одновременно с увеличением содержания углекислого газа во вдыхаемом воздухе нарастает его содержание в альвеолярном воздухе, а значит, и в артериальной крови. При этом происходит увеличение вентиляции легких. Результаты экспериментов дали убедительное доказательство того, что состояние дыхательного центра зависит от содержания углекислого газа в альвеолярном воздухе. Выявлено, что увеличение содержания СО2 в альвеолах на 0,2% вызывает увеличение вентиляции легких на 100%. Уменьшение содержания углекислого газа в альвеолярном воздухе (и, следовательно, уменьшение напряжения его в крови) понижает деятельность дыхательного центра. Это происходит, например, в результате искусственной гипервентиляции, т. е. усиленного глубокого и частого дыхания, которое приводит к снижению парциального давления СО2 в альвеолярном воздухе и напряжения СО2 в крови. В результате наступает остановка дыхания. Пользуясь таким способом, т. е. производя предварительную гипервентиляцию, можно значительно увеличить время произвольной задержки дыхания. Так поступают ныряльщики, когда им нужно провести под водой 2…3 минуты (обычная длительность произвольной задержки дыхания составляет 40…60 секунд). Прямое возбуждающее действие углекислоты на дыхательный центр доказано путем различных экспериментов. Инъекция 0,01 мл раствора, содержащего углекислоту или ее соль, в определенный участок продолговатого мозга вызывает усиление дыхательных движений. Эйлер подвергал изолированный продолговатый мозг кошки действию углекислого газа и наблюдал, что это вызывает увеличение частоты электрических разрядов (потенциалов действия), свидетельствующее о возбуждении дыхательного центра. На дыхательный центр оказывает влияние повышение концентрации водородных ионов. Винтерштейн в 1911 г. высказал точку зрения, что возбуждение дыхательного центра вызывает не сама угольная кислота, а, повышение концентрации водородных ионов вследствие увеличения ее содержания в клетках дыхательного центра. Это мнение основывается на том, что усиление дыхательных движений наблюдается при введении в артерии, питающие мозг, не только угольной кислоты, но и других кислот, например молочной. Возникающая при увеличении концентрации водородных ионов в крови и тканях гипервентиляция способствует выделению из организма части содержащейся в крови углекислоты и тем самым приводит к уменьшению концентрации водородных ионов. Согласно этим экспериментам, дыхательный центр является регулятором постоянства не только напряжения углекислоты в крови, но и концентрации водородных ионов. Установленные Винтерштейном факты нашли подтверждение в экспериментальных исследованиях. Вместе с тем ряд физиологов настаивал на том, что угольная кислота является специфическим раздражителем дыхательного центра и оказывает на него более сильное возбуждающее действие, чем другие кислоты. Причиной этого оказалось то, что углекислый газ легче, чем Н+-ион, проникает через гематоэнцефалический барьер, отделяющий кровь от цереброспинальной жидкости, которая является непосредственной средой, омывающей нервные клетки, и легче проходит через мембрану самих нервных клеток. При поступлении СО2 внутрь клетки образуется Н2СО3, которая диссоциирует с освобождением Н+-ионов. Последние и являются возбудителями клеток дыхательного центра. Другой причиной более сильного по сравнению с другими кислотами действия Н2СО3 является, по мнению ряда исследователей, то, что она специфически влияет на некоторые биохимические процессы в клетке. Стимулирующее влияние углекислого газа на дыхательный центр является основанием одного мероприятия, нашедшего применение в клинической практике. При ослаблении функции дыхательного центра и возникающем при этом недостаточном снабжении организма кислородом больного заставляют дышать через маску смесью кислорода с 6% углекислого газа. Такая газовая смесь носит название карбогена. Механизм действия повышенного напряжения СО2и увеличенной концентрации Н+-ионов в крови на дыхание Долгое время считалось, что повышение напряжения углекислого газа и увеличение концентрации Н+-ионов в крови и цереброспинальной жидкости (ликворе) влияют непосредственно на инспираторные нейроны дыхательного центра. В настоящее же время установлено, что изменения напряжения СО2 и концентрации Н+-ионов действуют на дыхание, возбуждая находящиеся вблизи дыхательного центра хеморецепторы, чувствительные к указанным выше изменениям. Эти хеморецепторы находятся в тельцах диаметром около 2 мм, расположенных симметрично с двух сторон продолговатого мозга на вентролатеральной его поверхности поблизости от места выхода подъязычного нерва. Значение хеморецепторов продолговатого мозга видно из следующих фактов. При воздействии на эти хеморецепторы углекислого газа или растворов с повышенной концентрацией Н+-ионов наблюдается стимуляция дыхания. Охлаждение одного из хеморецепторных телец продолговатого мозга влечет за собой, согласно опытам Лешке, прекращение дыхательных движений на противоположной стороне тела. Если хеморецепторные тельца разрушены или отравлены новокаином, дыхание прекращается. Наряду схеморецепторами продолговатого мозга в регуляции дыхания важная роль принадлежит хеморецепторам, находящимся в каротидном и аортальном тельцах. Это было доказано Геймансом в методически сложных опытах, в которых сосуды двух животных соединялись так, что каротидный синус и каротидное тельце или дуга аорты и аортальное тельце одного животного снабжались кровью другого животного. Оказалось, что увеличение концентрации Н+-ионов в крови и повышение напряжения СО2 вызывают возбуждение каротидных и аортальных хеморецепторов и рефлекторное усиление дыхательных движений. Имеются данные, что 35% эффекта, вызываемого вдыханием воздуха с высоким содержанием углекислого газа, обусловлены влиянием на хеморецепторы увеличенной концентрации Н+-ионов в крови, а 65% являются результатом повышения напряжения СО2. Действие СО2 объясняется быстрой диффузией углекислого газа через мембрану хеморецептора и сдвигом концентрации Н+-ионов внутри клетки. 4. Особенности дыхания животных высокогорья и долгоныряющих. В различных условиях среды обитания системы нейрогуморальной регуляции дыхания и кровообращения функционируют в тесном взаимодействии как единая кардиореспираторная система. Особенно четко это проявляется при интенсивной физической нагрузке и в условиях гипоксии - недостаточном снабжении организма кислородом. В процессе жизнедеятельности в организме возникают различные виды гипоксии, имеющие эндогенную и экзогенную природу. Во время выполнения физической работы мышцам необходимо большое количество кислорода. Потребление O2 и продукция СО2 возрастают при физической нагрузке в среднем в 15 - 20 раз. Обеспечение организма кислородом достигается сочетанным усилением функции дыхания и кровообращения. Уже в начале мышечной работы вентиляция легких быстро увеличивается. В возникновении гиперпноэ в начале физической работы периферические и центральные хеморецепторы как важнейшие чувствительные структуры дыхательного центра еще не участвуют. Уровень вентиляции в этот период регулируется сигналами, поступающими к дыхательному центру главным образом из гипоталамуса, лимбической системы и двигательной зоны коры большого мозга, а также раздражением проприорецепторов работающих мышц. По мере продолжения работы к нейрогенным стимулам присоединяются гуморальные воздействия, вызывающие дополнительный прирост вентиляции. При тяжелой физической работе на уровень вентиляции оказывают влияние также повышение температуры, артериальная двигательная гипоксия и другие лимитирующие факторы. Таким образом, наблюдаемые при физической работе изменения дыхания обеспечиваются сложным комплексом нервных и гуморальных механизмов. Однако из-за индивидуально лимитирующих факторов биомеханики дыхания, особенностей экопортрета человека, не всегда удается при выполнении одной и той же нагрузки полностью объяснить точное соответствие вентиляции легких уровню метаболизма в мышцах. Дыхание при гипоксии Гипоксией(кислородной недостаточностью) называется состояние, наступающее в организме при неадекватном снабжении тканей и органов кислородом или при нарушении утилизации в них кислорода в процессе биологического окисления. Исходя из этого достаточно точного определения гипоксии, все гипоксические состояния целесообразно разделить на экзогенные и эндогенные. Экзогенная гипоксияразвивается в результате действия измененных (в сравнении с обычными) факторов внешней среды. Эндогенная гипоксиявозникает при различных физиологических и патологических изменениях в различных функциональных системах организма. Реакция внешнего дыхания на гипоксию зависит от продолжительности и скорости нарастания гипоксического воздействия, степени потребления кислорода (покой и физическая нагрузка), индивидуальных особенностей организма и совокупности генетически обусловленных свойств и наследственных морфофункциональных признаков (экопортрет коренных жителей высокогорья и популяции различных этнических групп). Наблюдаемая в условиях кислородной недостаточности первоначальная гипоксическая стимуляция дыхания приводит к вымыванию углекислоты из крови и развитию дыхательного алкалоза. Гипоксия сочетается с гипокапнией. В свою очередь, это способствует увеличению рН внеклеточной жидкости мозга. Центральные хеморецепторы реагируют на подобный сдвиг рН в цереброспинальной жидкости мозга резким снижением своей активности. Это вызывает настолько существенное торможение нейронов дыхательного центра, что он становится нечувствительным к стимулам, исходящим от периферических хеморецепторов. Наступает своеобразная гипоксическая "глухота". Несмотря на сохраняющуюся гипоксию, постепенно гиперпноэ сменяется непроизвольной гиповентиляцией, что в определенной мере способствует также сохранению физиологически необходимого количества углекислоты. Реакция на гипоксию у коренных жителей высокогорья и у горных животных практически отсутствует, и, по мнению многих авторов, у жителей равнин гипоксическая реакция также исчезает после продолжительной (не менее 3-5 лет) их адаптации к условиям высокогорья. Основными факторами долговременной акклиматизации к условиям высокогорья являются; повышение содержания углекислоты и понижение содержания кислорода в крови на фоне снижения чувствительности периферических хеморецепторов к гипоксии, увеличения плотности капилляров и относительно высокого уровня утилизации тканями O2 из крови. У горцев также возрастают диффузионная способность легких и кислородная емкость крови за счет роста концентрации гемоглобина. Одним из механизмов, позволяющих горцам в условиях гипоксии повысить отдачу кислорода тканям и сохранить углекислоту, является способность повышенного образования у них метаболита глюкозы - 2,3 дифосфоглицерата. Этот метаболит снижает сродство гемоглобина к кислороду. Предметом интенсивных физиологических исследований как в эксперименте, так и в различных природно-климатических и производственных условиях является изучение функционального взаимодействия систем регуляции дыхания и кровообращения. Обе системы имеют общие рефлексогенные зоны в сосудах, которые посылают афферентные сигналы к специализированным нейронам основного чувствительного ядра продолговатого мозга - ядра одиночного пучка. Здесь же в непосредственной близости находятся дорсальное ядро дыхательного центра и сосудодвигательный центр. Особо следует отметить, что легкие являются единственным органом, куда поступает весь минутный объем крови. Это обеспечивает не только газотранспортную функцию, но и роль своеобразного фильтра, который определяет состав биологически активных веществ в крови и их метаболизм. Дыхание при высоком атмосферном давлении Во время водолазных и кессонных работ человек находится под давлением выше атмосферного на 1 атм. на каждые 10 м погружения. В этих условиях увеличивается количество газов, растворенных в крови, и особенно азота. При быстром подъеме водолаза на поверхность физически растворенные в крови и тканях газы не успевают выделиться из организма и образуют пузырьки - кровь "закипает". Кислород и углекислый газ быстро связываются кровью и тканями. Особую опасность представляют пузырьки азота, которые разносятся кровью и закупоривают мелкие сосуды (газовая эмболия), что сопровождается тяжелыми повреждениями ЦНС, органов зрения, слуха, сильными болями в мышцах и в области суставов, потерей сознания. Такое состояние, возникающее при быстрой декомпрессии, называется кессонной болезнью. Пострадавшего необходимо вновь поместить в среду с высоким давлением, а затем постепенно производить декомпрессию. Вероятность возникновения кессонной болезни может быть значительно снижена при дыхании специальными газовыми смесями, например гелиево-кислородной. Гелий почти нерастворим в крови, он быстрее диффундирует из тканей. 5. Роль гемоглобина в переносе углекислого газа и кислорода.
|