КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Гисто-функциональная характеристика и особенности организации серого и белого вещества в спинном мозге, стволе мозжечка и больших полушариях головного мозга.
Спинной мозг состоит из двух симметричных половин, отграниченных друг от друга спереди глубокой серединной щелью, а сзади – соединительнотканной перегородкой. Внутренняя часть органа темнее — это его серое вещество. На периферии спинного мозга располагается более светлое белое вещество. Серое веществоспинного мозга состоит из тел нейронов, безмиелиновых и тонких миелиновых волокон и нейроглии. Основной составной частью серого вещества, отличающей его от белого, являются мультиполярные нейроны. Выступы серого вещества принято называть рогами. Различают передние, или вентральные, задние, или дорсальные, и боковые, или латеральные, рога. В процессе развития спинного мозга из нервной трубки образуются нейроны, группирующиеся в 10 слоях, или в пластинах. Для человека характерна следующая архитектоникауказанных пластин: I—V пластины соответствуют задним рогам, VI—VII пластины — промежуточной зоне, VIII—IX пластины — передним рогам, X пластина — зона околоцентрального канала. Серое вещество мозга состоит из мультиполярных нейронов трех типов. Первый тип нейронов является филогенетически более древним и характеризуется немногочисленными длинными, прямыми и слабо ветвящимися дендритами (изоден-дритический тип). Второй тип нейронов имеет большое число сильно ветвящихся дендритов, которые переплетаются, образуя «клубки» (идиодендритический тип). Третий тип нейронов по степени развития дендритов занимает промежуточное положение между первым и вторым типами. Белое веществоспинного мозга представляет собой совокупность продольно ориентированных преимущественно миелиновых волокон. Пучки нервных волокон, осуществляющие связь между различными отделами нервной системы, называются проводящими путями спинного мозга. Мозжечок. Представляет собой центральный орган равновесия и координации движений. Он связан со стволом мозга афферентными и эфферентными проводящими пучками, образующими в совокупности три пары ножек мохжечка. На поверхности мозжечка много извилин и бороздок, которые значительно увеличивают ее площадь. Борозды и извилины создают на разрезе характерную для мозжечка картину «древа жизни». Основная масса серого вещества в мозжечке располагается на поверхности и образует его кору. Меньшая часть серого вещества лежит глубоко в белом веществе в виде центральных ядер. В центре каждой извилины имеется тонкая прослойка белого вещества, покрытая слоем серого вещества — корой. В коре мозжечка различают три слоя: наружный — молекулярный, средний — ганглионарный слой, или слой грушевидных нейронов, и внутренний — зернистый. Большие полушария. Полушарие большого мозга снаружи покрыто тонкой пластинкой серого вещества - корой большого мозга. Кора большого мозга (плащ) представлена серым веществом, расположенным по периферии полушарий большого мозга. Помимо коры, образующей поверхностные слои конечного мозга, серое вещество в каждом из полушарий большого мозга залегает в виде отдельных ядер, или узлов. Эти узлы находятся в толще белого вещества, ближе к основанию мозга. Скопления серого вещества в связи с их положением получили наименование базальных (подкорковых, центральных) ядер (узлов). К базальным ядрам полушарий относят полосатое тело, состоящее из хвостатого и чечевицеобразного ядер; ограду и миндалевидное тело.
Билет 37 1. Общий план строения эукариотических клеток. Способы репродукции клеток, их морфологическая характеристика.
Кроме клеток, в организме находятся их производные, которые не имеют клеточного строения (симпласт, синцитий, межклеточное вещество). Содержимое клетки отделено от внешней среды или от соседних клеток плазматической мембраной (плазмолеммой). Все эукариотические клетки состоят из двух основных компонентов: ядра и цитоплазмы. В ядре различают хроматин (хромосомы), ядрышки, ядерную оболочку, нуклеоплазму (кариоплазму) и ядерный белковый остов (матрикс). Цитоплазма неоднородна по своему составу и строению и включает в себя гиалоплазму (матрикс), в которой находятся органеллы; каждая из них выполняет обязательную функцию. Часть органелл имеет мембранное строение: эндоплазматический ретикулум, аппарат Гольджи, лизосомы, пероксисомы и митохондрии. Немембранные органеллы цитоплазмы представлены рибосомами, клеточным центром, ресничками, жгутиками и цитоскелетом. Кроме того, в гиалоплазме могут встретиться и иные структуры или включения (жировые капли, пигментные гранулы и др.). Такое разделение клетки на отдельные компоненты не означает их структурной и функциональной обособленности. Все эти компоненты выполняют отдельные внутриклеточные функции, необходимые для существования клетки как целого, как элементарной живой единицы. Взаимодействие структур клетки на примере синтеза белка. Экспрессия генов, то есть синтез белка на основе генетической информации, осуществляется в несколько этапов. Вначале на матрице ДНК синтезируется мРНК. Этот процесс называется транскрипцией. Последовательность пуриновых и пиримидиновых оснований мРНК комплементарна основаниям так называемой некодирующей цепи ДНК: аденину ДНК соответствует урацил РНК, цитозину ДНК - гуанин РНК, тимину ДНК - аденин РНК и гуанину ДНК - цитозин РНК. В ядре каждая мРНК подвергается существенным изменениям, в частности удаляются интронные последовательности (сплайсинг). Затем она выходит через ядерную оболочку в цитоплазму, где используется в качестве матрицы для синтеза белка (трансляции). Для этого мРНК присоединяется к рибосоме, которая состоит из рРНК и большого числа белков. Чтобы занять соответствующее место в молекуле белка, каждая из 20 аминокислот вначале прикрепляется к своей тРНК. Одна из петель каждой тРНК имеет триплет нуклеотидов - антикодон, комплементарный одному из кодонов мРНК. С участием цитоплазматических факторов (фактора инициации , фактора элонгации и фактора терминации ) между аминокислотами, выстраивающимися в цепь согласно последовательности кодонов мРНК, образуются пептидные связи. По достижении терминирующего кодона синтез прекращается, и полипептид отделяется от рибосомы. Процесс биосинтеза поставляет белки не только для роста организма или для секреции в среду. Все белки живых клеток со временем претерпевают распад до составляющих их аминокислот, и для поддержания жизни клетки должны синтезироваться вновь.
|