Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Магнитоэлектрические приборы.




Читайте также:
  1. Билет 2. Электроизмерительные приборы.

В таких приборах используется сила взаимодействия магнитного поля с током в витках обмотки подвижной части, стремящаяся повернуть последнюю. Момент этой силы уравновешивается моментом, создаваемым противодействующей пружиной, так что каждому значению тока соответствует определенное положение стрелки на шкале. Подвижная часть имеет форму многовитковой проволочной рамки с размерами от 35 до 2535 мм и делается как можно более легкой. Подвижная часть, установленная на каменных подшипниках или подвешенная на металлической ленточке, помещается между полюсами сильного постоянного магнита. Две спиральные пружинки, уравновешивающие крутящий момент, служат также токопроводами обмотки подвижной части.

Магнитоэлектрический прибор реагирует на ток, проходящий по обмотке его подвижной части, а потому представляет собой амперметр или, точнее, миллиамперметр (так как верхний предел диапазона измерений не превышает примерно 50 мА). Его можно приспособить для измерения токов большей силы, присоединив параллельно обмотке подвижной части шунтирующий резистор с малым сопротивлением, чтобы в обмотку подвижной части ответвлялась лишь малая доля полного измеряемого тока. Такое устройство пригодно для токов, измеряемых многими тысячами ампер. Если последовательно с обмоткой присоединить добавочный резистор, то прибор превратится в вольтметр. Падение напряжения на таком последовательном соединении равно произведению сопротивления резистора на ток, показываемый прибором, так что его шкалу можно проградуировать в вольтах. Чтобы сделать из магнитоэлектрического миллиамперметра омметр, нужно присоединять к нему последовательно измеряемые резисторы и подавать на это последовательное соединение постоянное напряжение, например от батареи питания. Ток в такой схеме не будет пропорционален сопротивлению, а потому необходима специальная шкала, корректирующая нелинейность. Тогда можно будет производить по шкале прямой отсчет сопротивления, хотя и с не очень высокой точностью.

Амперметр – измерительный прибор для определения силы постоянного и переменного тока в электрической цепи. Показания амперметра всецело зависят от величины протекающего через него тока, в связи, с чем сопротивление амперметра по сравнению с сопротивлением нагрузки должно быть как можно меньшим. По своим конструктивным особенностям амперметры подразделяются на магнитоэлектрические, электромагнитные, термоэлектрические, электродинамические, ферродинамические и выпрямительные.



Магнитоэлектрические амперметры служат для измерения силы тока малой величины в цепях постоянного тока. Они состоят из магнитоэлектрического измерительного механизма и шкалы с нанесенными делениями, соответствующими различным значениям измеряемого тока.

Электромагнитные амперметры предназначены для измерения силы протекающего тока в цепях постоянного и переменного тока. Чаще всего используются для измерения силы в цепях переменного тока промышленной частоты (50 Гц). Состоят из измерительного механизма, шкала которого размечена в единицах силы тока, протекающего по катушке прибора. Для изготовления катушки можно использовать провод большого сечения и, следовательно, измерять ток большой величины (свыше 200 А).

Термоэлектрические амперметры применяются для измерения в цепях переменного тока высокой частоты. Они состоят из магнитоэлектрического прибора с контактным или бесконтактным преобразователем, который представляет собой проводник (нагреватель), к которому приварена термопара (она может находиться на некотором расстоянии от нагревателя и не иметь с ним непосредственного контакта). Ток, проходя по нагревателю, вызывает его нагрев (за счет активных потерь), который регистрируется термопарой. Возникающее термическое излучение воздействует на рамку магнитоэлектрического измерителя тока, которая отклоняется на угол, пропорциональный силе тока в цепи.



Электродинамические амперметры служат для измерения силы тока в цепях постоянного и переменного токов повышенной (до 200 Гц) частот. Приборы очень чувствительны к перегрузкам и внешним магнитным полям. Применяются в качестве контрольных приборов для проверки рабочих измерителей силы тока. Состоят из электродинамического измерительного механизма, катушки которого в зависимости от величины максимально измеряемого тока соединены последовательно или параллельно, и градуированной шкалы. При измерении токов малой силы катушки соединяются последовательно, а большой – параллельно.

Ферродинамические амперметры прочны и надежны по конструкции, малочувствительны к воздействию внешних магнитных полей. Они состоят из ферродинамического измерительного аппарата и применяются главным образом в системах автоматических контроллеров в качестве самопишущих амперметров.

Каждый амперметр рассчитывается на некоторое определенное максимальное значение измеряемой величины. Но, часто, возникают ситуации, когда необходимо выполнить измерение некоторой величины, значение которой больше пределов измерения прибора. Тем не менее, всегда оказывается возможным расширить пределы измерения данным прибором. Для этого параллельно амперметру присоединяют проводник, по которому проходит часть измеряемого тока. Значение сопротивления этого проводника рассчитывается так, чтобы сила тока, проходящего через амперметр, не превышала его максимально допустимого значения. Такое сопротивление называется шунтирующим. Результатом подобных действий станет то, что если амперметром, рассчитанным, например, на силу тока до 1 А, необходимо выполнить измерение тока в 10 раз больше, то сопротивление шунта должно быть в 9 раз меньше сопротивления амперметра. Разумеется, при этом цена градуировки увеличивается в 10 раз, а точность во столько же раз уменьшается.



Вольтметр – это электрический прибор, относящийся к классу гальванометров и предназначенный для определения электродвижущей силы и напряжений. Основная единица измерения устройства – вольт, помимо этого существуют видовые измерители в микровольтах, милливольтах, киловольтах и так далее. Вольтметры подключаются параллельно к источнику электроэнергии или нагрузке электроцепи.

Различные принципы действия, положенные в основу прибора, обусловили две большие категории приборов. Одна из групп вольтметров включает в себя электромеханические измерители, к которым относятся:

магнитоэлектрические;

электромагнитные;

электродинамические;

электростатические;

выпрямительные;

термоэлектрические.

Вторую группу составляют электронные средства измерения. Сюда относятся аналоговые и цифровые вольтметры. Они обладают большим входным сопротивлением и функционируют в широком диапазоне частот – от 50 гц до 100 Мгц. Цифровой вольтметр демонстрирует очень высокий класс точности измерений. Погрешность измерений может быть от 0,5 до 0,001%.

Самыми доступными по цене являются электромагнитные вольтметры. Они просты в исполнении и обладают высоким классом надежности. Эти приборы имеют прикладное значение в промышленности.

Устройства также различаются по способу использования. Здесь выделяется вольтметр постоянного или переменного тока, импульсный, селективный, фазочувствительный. Конструктивные особенности определяют разделение средств измерений на щитовые, стационарные и переносные.

Выбирая вольтметры, необходимо ориентироваться на те задачи, которые предстоит решать прибору. Важно также учитывать сопутствующие характеристики функционирования – интенсивность использования, специфику замеров, требования к погрешности проводимых измерений и так далее.

Сегодня широкое распространение получила продажа универсальных вольтметров, позволяющих измерять различные физические характеристики.

 

28.Гальванометры.

К магнитоэлектрическим приборам относятся гальванометры – высокочувствительные приборы для измерения крайне малых токов. В гальванометрах нет подшипников, их подвижная часть подвешена на тонкой ленточке или нити, используется более сильное магнитное поле, а стрелка заменена зеркальцем, приклеенным к нити подвеса (рис. 1). Зеркальце поворачивается вместе с подвижной частью, а угол его поворота оценивается по смещению отбрасываемого им светового зайчика на шкале, установленной на расстоянии около 1 м. Самые чувствительные гальванометры способны давать отклонение по шкале, равное 1 мм, при изменении тока всего лишь на 0,00001 мкА.

 

29.Омметры

 

В омметрах применен метод непосредственной оценки измеряемой величины, которая находится непосредственно по шкале, заранее проградуированной в соответствующих единицах, или считывается с электронного табло цифровых приборов. Простейшим омметром является электромеханический омметр с однорамочным измерительным механизмом.Он может быть выполнен по последовательной или параллельной схемам. Омметр состоит из источника питания, измерительного механизма и переменного резистора.

Источником питания омметров подобного вида служит, как правило, батарея гальванических элементов. В качестве измерителя И используется однорамочныймагнитоэлектрический измерительный механизм с добавочным сопротивлением Rд­ (примером такого измерительного механизма служит гальванометр магнитоэлектрической системы).

Рассмотрим сначала последовательную схему омметра(рис. 2.3а).

При включении в цепь резистора с неизвестным сопротивлением измеряется сила тока, которая обратно пропорциональна сопротивлению цепи. Сила тока, протекающего через измерительный механизм при разомкнутом ключе К, определяется выражением:

(2.11)

 

 

где Rи - сопротивление измерительного механизма, Rб - сопротивление батареи элементов, Rд – сопротивление добавочного резистора, Rx - измеряемое сопротивление.

С другой стороны, эта же сила тока равна:

I=KI*, (2.12)

где КI - постоянная измерительного механизма по току,

 - угол поворота подвижной части измерительного механизма.

Приравняв формулы (2.11) и (2.12), найдем :

(2.13)

 

При постоянных значениях U, KI, Rб, R­и и Rд угол поворота измерительного механизма  определяется значением измеряемого сопротивления Rx, то есть шкала прибора может быть проградуирована в единицах сопротивления. Из формулы для  следует, что шкала у омметра неравномерная.

 

 

При бесконечно большом сопротивлении Rx стрелка прибора не отклоняется, так как ток равен нулю. При нулевом сопротивлении (или замкнутом ключе К) сила тока наибольшая и стрелка отклоняется на всю шкалу. Таким образом, нуль шкалы находится у рассматриваемых омметров справа, что соответствует максимальному углу поворота подвижной части измерительного механизма, так как при Rx=0 угол  максимален. Промежуточные значения сопротивления Rx вызовут отклонение стрелки омметра в пределах от нуля шкалы до бесконечного сопротивления на шкале.

Недостатком этого способа измерения является то, что с течением времени ЭДС батареи уменьшается, что приводит к погрешности в измерении сопротивления. Для поддержания постоянного напряжения на измерительном механизме используют добавочный резистор Rд. При замкнутом ключе К производится установка нуля омметра изменением сопротивления резистора Rд.

Омметры с последовательной схемой используются для измерения сравнительно больших сопротивлений (единиц килоом), при меньших значениях Rx эта схема имеет малую чувствительность. По последовательной схеме выполнен омметр комбинированного прибора АВО-63.

При измерении небольших сопротивлений применяются омметры, выполненные по параллельной схеме (рис. 2.3 б).

При замыкании ключа К ток протекает по двум параллельно соединенным участкам: через измерительный механизм и измеряемый резистор Rx. Если резистор Rx отсутствует и замкнут ключ (короткое замыкание выводов измерительного механизма), то весь ток протекает через ключ и стрелка измерительного механизма не отклоняется. Если же в качестве резистора Rx взято бесконечно большое сопротивление (соответствует разомкнутому ключу), то весь ток протекает через измерительный механизм и его стрелка отклоняется на всю шкалу. Таким образом, нуль шкалы у такого типа омметров слева. Для контроля правильности показаний прибора размыкают ключ. В этом случае стрелка должна находиться в крайнем правом положении.

В приборе Ц4353 реализованы обе схемы (последовательная и параллельная).

Проверку омметров можно провести с помощью магазина сопротивлений.

 

 

В практической работе удобны омметры с равномерной шкалой. На рисунке 2.4а приведена структурная схема омметра с равномерной шкалой, в котором исследуемый резистор Rхвключают в цепь стабилизатора тока (ток в цепи стабилизатора тока на зависит от сопротивления нагрузки). Напряжение на резисторе Rх, измеренное вольтметром с большим внутренним сопротивлением, пропорционально сопротивлению исследуемого резистора. На рисунке 2.4б приведена схема омметра с равномерной шкалой на базе операционного усилителя. Измеряемое сопротивление определяется по формуле Rx=UвыхRэт/Uоп, где Uвых – напряжение на выходе операционного усилителя ОУ, Uоп – напряжение опорного источника, Rэт – сопротивление эталонного резистора. Измеряемое сопротивление прямо пропорционально выходному напряжению и отсчитывается по равномерной шкале измерительного прибора И, отградуированной в единицах сопротивления.

 


Дата добавления: 2015-01-19; просмотров: 75; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.014 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты