Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Группы крови. Резус-фактор. Правила переливания крови.




 

Деление по группам крови системы АВ0 основано на комбинациях агглютиногенов эритроцитов и агглютининов плазмы.

· I (0) – в мембране эритроцитов нет агглютиногенов, в плазме крови присутствуют α– и β-агглютинины.

· II (A) – в мембране эритроцитов присутствует агглютиноген A, в плазме крови – α-агглютинин.

· III (B) – в мембране эритроцитов присутствует агглютиноген B, в плазме крови – β-агглютинин.

· IV (AB) – в мембране эритроцитов присутствует агглютиноген А и агглютиноген В, в плазме нет агглютининов.

 

Резус-фактор представляет собой антиген (белок), который находится в эритроцитах. Примерно 80-85% людей имеют его и соответственно являются резус-положительными. Те же, у кого его нет – резус-отрицательными.

 

При переливании крови необходимо соблюдать следующие правила:

1. до переливания определяется групповая принадлежность и резус-фактор крови донора и реципиента, переливают кровь одной групповой принадлежности;

2. перед гемотрансфузией проводят пробу на биологическую совместимость;

3. в случае отсутствия реакции агглютинации при проведении биологической пробы проводят пробу на индивидуальную совместимость: при введении реципиенту 10 мл донорской крови в течение 10-15 минут наблюдают за состоянием пациента; при отсутствии жалоб и реакций со стороны организма начинают переливание крови;

4. кровь переливается в ограниченном количестве (не более 150 мл).

 

(52) Дыхание, его основные этапы. Механизм внешнего дыхания. Биомеханика вдоха и выдоха. Механизмы смены дыхательных фаз.

Дыхание – это обмен кислорода и углекислого газа между клетками организма и окружающей среды.

 

Различают несколько этапов дыхания:

1. Внешнее дыхание - обмен газов между атмосферой и альвеолами.

2. Обмен газов между альвеолами и кровью легочных капилляров.

3. Транспорт газов кровью - процесс переноса О2 от легких к тканям и СО2 от тканей - к легким.

4. Обмен О2 и СО2 между кровью капилляров и клетками тканей организма.

5. Внутреннее, или тканевое, дыхание - биологическое окисление в митохондриях клетки.

 

Внешнее дыхание осуществляется благодаря изменениям объема грудной клетки и сопутствующим изменениям объема легких.

 

Объем грудной клетки увеличивается во время вдоха, или инспирации, и уменьшается во время выдоха, или экспирации. Эти дыхательные движения обеспечивают легочную вентиляцию.

 

В дыхательных движениях участвуют три анатомо-функциональных образования:

1. Дыхательные пути, которые по своим свойствам являются слегка растяжимыми, сжимаемыми и создают поток воздуха, особенно в центральной зоне;

2. Эластичная и растяжимая легочная ткань;

3. Грудная клетка, состоящая из пассивной костно-хрящевой основы, которая объединена соединительнотканными связками и дыхательными мышцами. Грудная клетка относительно ригидна на уровне ребер и подвижна на уровне диафрагмы.

 

Известно два биомеханизма, которые изменяют объем грудной клетки: поднятие и опускание ребер и движения купола диафрагмы; оба биомеханизма осуществляются дыхательными мышцами. Дыхательные мышцы подразделяют на инспираторные и экспираторные.

Инспираторными мышцами являются диафрагма, наружные межреберные и межхрящевые мышцы. При спокойном дыхании объем грудной клетки изменяется в основном за счет сокращения диафрагмы и перемещения ее купола. При глубоком форсированном дыхании в инспирации участвуют дополнительные, или вспомога­тельные, мышцы вдоха: трапециевидные, передние лестничные и грудино-ключично-сосцевидные мышцы. Лестничные мышцы поднимают два верхних ребра и активны при спокойном дыхании. Грудино-ключично-сосцевидные мышцы поднимают грудину и увеличивают сагиттальный диаметр грудной клетки. Они включаются в дыхание при легочной вентиляции свыше 50 л*мин-1 или при дыхательной недостаточности.

Экспираторными мышцами являются внутренние межреберные и мышцы брюшной стенки, или мышцы живота. Последние нередко относят к главным экспираторным мышцам.

 

(53) Давление в плевральной полости, его происхождение и роль в механизме внешнего дыхания и изменение в разные фазы дыхательного цикла.

 

Внутриплевральное давление — давление в герметично замкнутой плевральной полости между висцеральными и париетальными листками плевры. В норме это давление является отрицательным относительно атмосферного. Внутриплевральное давление возникает и поддерживается в результате взаимодействия грудной клетки с тканью легких за счет их эластической тяги. При этом эластическая тяга легких развивает усилие, которое всегда стремится уменьшить объем грудной клетки. В формировании конечного значения внутриплеврального давления участвуют также активные силы, развиваемые дыхательными мышцами во время дыхательных движений. Наконец, на поддержание внутриплеврального давления влияют процессы фильтрации и всасывания внутриплевральной жидкости висцеральной и париетальной плеврами.

При спокойном дыхании внутриплевральное давление ниже атмосферного в инспирацию на 6—8 см вод. ст., а в экспирацию — на 4—5 см вод. ст.

Внутриплевральное давление в апикальных частях легких на 6—8 см вод. ст. ниже, чем в базальных отделах легких, прилегающих к диафрагме. У человека в положении стоя этот градиент практически линейный и не изменяется в процессе дыхания. В положении лежа на спине или на боку градиент несколько меньше (0,1—0,2 см вод.ст.*см-1 ) и совсем отсутствует в вертикальном положении вниз головой.

 

(54-56) Газообмен в легких. Парциальное давление газов (О2, СО2) в альвеолярном воздухе и напряжение газов в крови.

Газообмен в тканях. Парциальное напряжение О2 и СО2 в тканевой жидкости и клетках.

Газообмен О2 и СО2 через альвеолярно-капиллярную мембрану происходит с помощью диффузии, которая осуществляется в два этапа. На первом этапе диффузионный перенос газов происходит через аэрогематический барьер, на втором - происходит связывание газов в крови легочных капилляров, объем которой оставляет 80-150 мл при толщине слоя крови в капиллярах всего 5-8 мкм. Плазма крови практически не препятствует диффузии газов, в отличие от мембраны эритроцитов.

Структура легких создает благоприятные условия для газообмена: дыхательная зона каждого легкого содержит около 300 млн. альвеол и примерно такое же число капилляров, имеет площадь 40-140 м2, при толщине аэрогематического барьера всего 0,3-1,2 мкм.

Особенности диффузии газов количественно характеризуются через диффузионную способность легких. Для О2 диффузионная способность легких - это объем газа, переносимого из альвеол в кровь в 1 минуту при градиенте альвеолярно-капиллярного давления газа, равном 1 мм рт.ст.

Движение газов происходит в результате разницы парциальных давлений. Парциальное давление - это та часть давления, которую составляет данный газ из общей смеси газов. Пониженное давление О2 в ткани способствует движению кислорода к ней. Для СО2 градиент давления направлен в обратную сторону, и СО2 с выдыхаемым воздухом уходит в окружающую среду.

Градиент парциального давления кислорода и углекислого газа – это сила, с которой молекулы этих газов стремятся проникнуть через альвеолярную мембрану в кровь.

Парциальное напряжение газа в крови или тканях - это сила, с которой молекулы растворимого газа стремятся выйти в газовую среду.

На уровне моря атмосферное давление составляет в среднем 760 мм рт.ст., а процентное содержание кислорода - около 21%. В этом случае рО2 в атмосфере составляет: 760 х 21/100=159 мм рт.ст. При вычислении парциального давления газов в альвеолярном воздухе следует учитывать, что в этом воздухе присутствуют пары воды (47 мм рт.ст.). Поэтому это число вычитают из значения атмосферного давления, и на долю парциального давления газов приходится (760^47) =713 мм рт.ст. При содержании кислорода в альвеолярном воздухе, равном 14 %, его парциальное давление будет 100 мм рт. ст. При содержании двуокиси углерода, равном 5,5%, парциальное давление СО2 составит примерно 40 мм рт.ст.

В артериальной крови парциальное напряжение кислорода достигает почти 100 мм рт.ст., в венозной крови - около 40 мм рт.ст., а в тканевой жидкости, в клетках - 10-15 мм рт.ст. Напряжение углекислого газа в артериальной крови составляет около 40 мм рт.ст., в венозной - 46 мм рт.ст., а в тканях - до 60 мм рт.ст.

 

(55) Транспорт кислорода кровью. Кривая диссоциации оксигемоглобина, ее характеристика. Кислородная емкость крови. Транспорт углекислоты кровью. Значение карбоангидразы.

 

2 формы транспорта кислорода:

1. Физически растворенный газ: 3 мл О2 в 1 л крови.

Растворение происходит в соответствии с законом Генри, согласно которому количество газа, растворенного в жидкости, прямо пропорционально парциальному давлению этого газа над жидкостью.

2. Связанный гемоглобином газ: 200 мл О2 в 1 л крови.

 

Кривая диссоциации оксигемоглобина (сатурационная кривая) – это кривая, отражающая зависимость степени оксигенации гемоглобина от напряжения кислорода в окружающем пространстве.

Плато кривой характерно для насыщенной О2 (сатурированной) артериальной крови, а крутая нисходящая часть кривой - венозной, или десатурированной, крови в тканях.

 

Рис. 1. Кривые диссоциации оксигемоглобина цельной крови при различных рН крови (А) и при изменении температуры (Б)

Кривые 1-6 соответствуют 0°, 10°, 20°, 30°, 38° и 43°С

Сродство кислорода к гемоглобину и способность отдавать 02 в тканях зависит от метаболических потребностей клеток организма и регулируется важнейшими факторами метаболизма тканей, вызывающими смещение кривой диссоциации. К этим факторам относятся: концентрация водородных ионов, температура, парциальное напряжение углекислоты и соединение, которое накапливается в эритроцитах - это 2,3-дифосфоглицератфосфат (ДФГ). Уменьшение рН крови вызывает сдвиг кривой диссоциации вправо, а увеличение рН крови - сдвиг кривой влево. Вследствие повышенного содержания СО2 в тканях рН также меньше, чем в плазме крови. Величина рН и содержание СО2 в тканях организма изменяют сродство гемоглобина к О2. Их влияние на кривую диссоциации оксигемоглобина называется эффектом Бора. При повышении концентрации водородных ионов и парциального напряжения СО2 в среде сродство гемоглобина к кислороду снижается. Этот "эффект" имеет важное приспособительное значение: СО2 в тканях поступает в капилляры, поэтому кровь при том же рО2 способна освободить больше кислорода. Образующийся при расщеплении глюкозы метаболит 2,3-ДФГ также снижает сродство гемоглобина к кислороду.

На кривую диссоциации оксигемоглобина оказывает влияние также и температура. Рост температуры значительно увеличивает скорость распада оксигемоглобина и уменьшает сродство гемоглобина к 02. Увеличение температуры в работающих мышцах способствует освобождению О2 Связывание 02 гемоглобином снижает сродство его аминогрупп к СО2 (эффект Холдена). Диффузия СО2 из крови в альвеолы обеспечивается за счет поступления растворенного в плазме крови СО2 (5-10%), из гидрокарбонатов (80-90%) и, наконец, из карбаминовых соединений эритроцитов (5-15%), которые способны диссоциировать.

 

Кислородная емкость крови – это количество кислорода, которое может связывать кровь при полном насыщении гемоглобина кислородом.

Зависит от количества гемоглобина в крови: КЕК = 1,34 * Hb

Константа Гюфнера: 1 гр. Hb – 1,34 мл О2

Кислородная емкость 1 литра крови составляет ≈ 200 мл О2

 

3 формы транспорта СО2:

1. Физически растворенный газ – 10-12%.

2. Химически связанный в бикарбонатах: в плазме NaHCO3, в эритроцитах KHCO3 – 60-80%/

3. Связанный в карбаминовых соединениях гемоглобина:

Hb*NH2 + CO2 = HbNHCOOH – 11-20%

 

Карбоангидраза катализирует обратимое образование угольной кислоты из двуокиси углерода и воды. Содержится в эритроцитах, клетках почек, слизистой желудка, сетчатке глаза и др.

К. эритроцитов обеспечивает в тканях связывание CO2 кровью и быстрое освобождение последней от CO2 в лёгких.

 

(57) Физиология и значение дыхательных путей. Регуляция их просвета.

Дыхательная система включает в себя:

1. Воздухоносные пути (нос, полость носа, носоглотка, гортань, трахея, бронхи и бронхиолы);

2. Легкие;

3. Элементы костно-мышечной системы (ребра, межреберные мышцы, диафрагма и вспомогательные дыхательные мышцы).

 

Нос и полость носа служат проводящими каналами для воздуха, где он нагревается, увлажняется и фильтруется. Полость носа выстлана богато васкулиризированной слизистой оболочкой. В верхней части полости носа лежат обонятельные рецепторы. Носовые ходы открываются в носоглотку. Гортань лежит между трахеей и корнем языка. У нижнего конца гортани начинается трахея и спускается в грудную полость, где делится на правый и левый бронхи. Установлено, что дыхательные пути от трахеи до концевых дыхательных единиц (альвеол) ветвятся (раздваиваются) 23 раза. Первые 16 "поколений" дыхательных путей - бронхи и бронхиолы выполняют проводящую функцию. "Поколения" 17-22 - респираторные бронхиолы и альвеолярные ходы, составляют переходную (транзиторную) зону, и только 23-е "поколение" является дыхательной респираторной зоной и целиком состоит из альвеолярных мешочков с альвеолами. Общая площадь поперечного сечения дыхательных путей по мере ветвления возрастает более чем в 4,5 тысячи раз. Правый бронх обычно короче и шире левого.

 

Воздухоносные пути, помимо газотранспортной, выполняют целый ряд других функций. В них происходит согревание, увлажнение, очищение воздуха, регуляция его объема за счет способности мелких бронхов изменять свой просвет, а также рецепция вкусовых и обонятельных раздражителей.

Эндотелиальные клетки слизистой оболочки полости носа выбрасывают за сутки до 500 - 600 мл секрета. Этот секрет участвует в выведении из дыхательных путей инородных частиц и способствует увлажнению вдыхаемого воздуха. Слизистая оболочка трахеи и бронхов продуцирует в сутки до 100 - 150 мл секрета. Их выведение осуществляется реснитчатым эпителием трахеи и бронхов. Каждая клетка мерцательного эпителия имеет около 200 ресничек, которые совершают координированные колебательные движения частотой 800- 1000 в 1 минуту. Наибольшая частота колебаний ресничек наблюдается при температуре 37°С, снижение температуры вызывает угнетение их двигательной активности. Вдыхание табачного дыма и других газообразных наркотических и токсических веществ вызывает торможение активности мерцательного эпителия.

Слизистая оболочка трахеи выделяет такие биологически активные вещества, как пептиды, серотонин, дофамин, норадреналин. Альвеолоциты 1-го порядка вырабатывают поверхностно-активное стабилизирующее вещество сурфактант, о котором упоминалось выше. Снижение продукции сурфактанта приводит к ателектазу - спадению стенок альвеол и выключению определенной доли легкого из газообмена. Подобные нарушения системы дыхания возникают при изменении микроциркуляции и питания легкого, курении, воспалении и отеке, при гипероксии, длительном применении жирорастворимых анестетиков, продолжительной искусственной вентиляции легких и ингаляции чистого кислорода. Нарушения секреторной функции бронхиальных желез и М-холинорецепторов бронхиальной мускулатуры приводит к бронхоспазму, связанному с повышением тонуса кольцевой мускулатуры бронхов и активным выделением жидкого секрета бронхиальных желез, затрудняющему поступление воздуха в легкие. При раздражении b2-адренорецепторов, например, адреналином, а не норадреналином, взаимодействующим с отсутствующими в мускулатуре бронхов a-адренорецепторами, возникает снижение тонуса бронхов и их расширение.

Легкие выполняют фильтрационно-защитную функцию. Альвеолярные макрофаги фагоцитируют попавшие к ним пылевые частицы, микроорганизмы и вирусы. В бронхиальной слизи содержатся также лизоцим, интерферон, протеазы, иммуноглобулин и другие компоненты. Легкие являются не только механическим фильтром, очищающим кровь от разрушенных клеток, сгустков фибрина и других частиц, но и метаболизируют их с помощью своей ферментативной системы.

Легочная ткань принимает участие в липидном и белковом обмене, синтезируя фосфолипиды и глицерин и окисляя своими липопротеазами эмульгированные жиры, жирные кислоты и глицериды до углекислого газа с выделением большого количества энергии. Легкие синтезируют белки, входящие в состав сурфактанта.

В легких синтезируются вещества, относящиеся к свертывающей (тромбопластин) и противосвертывающей (гепарин) системам. Гепарин, растворяя тромбы, способствует свободному кровообращению в легких.

Легкие принимают участие в водно-солевом обмене, удаляя за сутки 500 мл воды. В то же время легкие могут поглощать воду, которая поступает из альвеол в легочные капилляры. Вместе с водой легкие способны пропускать крупномолекулярные вещества, например, лекарственные препараты, которые вводятся непосредственно в легкие в виде аэрозолей или жидкостей через интубационную трубку.

В легких подвергаются биотрансформации, инактивации, детоксикации, ферментативному расщеплению и концентрации различные биологически активные вещества и лекарственные препараты, которые затем выводятся из организма. Так, в легких подвергаются инактивации: ацетилхолин, норадреналин, серотонин, брадикинин, простагландины E1, E2, F. Ангиотензин I превращается в легких в ангиотензин II.

 

(58) Дыхательный центр. Современное представление о его структуре и локализации. Автоматия дыхательного центра.

 

Дыхательный центр – совокупность нейронов специфических (дыхательных) ядер продолговатого мозга, способных генерировать дыхательный ритм.

В нормальных (физиологических) условиях дыхательный центр получает афферентные сигналы от периферических и центральных хеморецепторов, сигнализирующих соответственно о парциальном давлении О2 в крови и концентрации Н+ во внеклеточной жидкости мозга. В период бодрствования деятельность дыхательного центра регулируется дополнительными сигналами, исходящими из различных структур ЦНС. У человека это, например, структуры, обеспечивающие речь. Речь (пение) может в значительной степени отклонить от нормального уровень газов крови, даже снизить реакцию дыхательного центра на гипоксию или гиперкапнию. Афферентные сигналы от хеморецепторов тесно взаимодействуют с другими афферентными стимулами дыхательного центра, но, в конечном счете, химический, или гуморальный, контроль дыхания всегда доминирует над нейрогенным. Например, человек произвольно не может бесконечно долго задерживать дыхание из-за нарастающих во время остановки дыхания гипоксии и гиперкапнии.

 

Функции дыхательного центра:

1. Моторная, или двигательная, – проявляется в виде сокращения дыхательных мышц.

Двигательная функция дыхательного центра заключается в генерации дыхательного ритма и его паттерна. Под генерацией дыхательного ритма понимают генерацию дыхательным центром вдоха и его прекращение (переход в экспирацию). Под паттерном дыхания следует понимать длительность вдоха и выдоха, величину дыхательного объема, минутного объема дыхания. Моторная функция дыхательного центра адаптирует дыхание к метаболическим потребностям организма, приспосабливает дыхание в поведенческих реакциях (поза, бег и др.), а также осуществляет интеграцию дыхания с другими функциями ЦНС.

2. Гомеостатическая – связанна с изменением характера дыхания при сдвигах содержания О2 и СО2 во внутренней среде организма.

Гомеостатическая функция дыхательного центра поддерживает нормальные величины дыхательных газов (O2, CO2) и рН в крови и внеклеточной жидкости мозга, регулирует дыхание при изменении температуры тела, адаптирует дыхательную функцию к условиям измененной газовой среды, например при пониженном и повышенном барометрическом давлении.

 

Локализация и функциональные свойства дыхательных нейронов. Нейроны дыхательного центра локализованы в дорсомедиальной и вентролатеральной областях продолговатого мозга и образуют так называемые дорсальную и вентральную дыхательную группу.

 

Дыхательные нейроны, активность которых вызывает инспирацию или экспирацию, называются соответственно инспираторными и экспираторными нейронами. Инспираторные и экспираторные нейроны иннервируют дыхательные мышцы. В дорсальной и вентральной дыхательной группах продолговатого мозга обнаружены следующие основные типы дыхательных нейронов:

1. Ранние инспираторные, которые разряжаются с максимальной частотой в начале фазы вдоха;

2. Поздние инспираторные, максимальная частота разрядов которых приходится на конец инспирации;

3. Полные инспираторные с постоянной или с постепенно нарастающей активностью в течение фазы вдоха;

4. Постинспираторные, которые имеют максимальный разряд в начале фазы выдоха;

5. Экспираторные с постоянной или постепенно нарастающей активностью, которую они проявляют во вторую часть фазы выдоха;

6. Преинспираторные, которые имеют максимальный пик активности непосредственно перед началом вдоха.

Тип нейронов определяется по проявлению его активности относительно фазы вдоха и выдоха.

 

Нейроны дыхательного центра ствола мозга обладают автоматизмом, т. е. способностью к спонтанному периодическому возбуждению. Для автоматической деятельности нейронов ДЦ необходимо постоянное поступление к ним сигналов от хеморецепторов, а также от ретикулярной формации ствола мозга. Автоматическая деятельность нейронов ДЦ находится под выраженным произвольным контролем, который состоит в том, что человек может в широких пределах изменять частоту и глубину дыхания.

 

(59) Рефлекторная саморегуляция дыхания. Регуляторные влияния на дыхательный центр со стороны высших отделов головного мозга (гипоталамус, лимбическая система, кора больших полушарий).

Нейроны дыхательного центра имеют связи с многочисленными механорецепторами дыхательных путей и альвеол легких и рецепторов сосудистых рефлексогенных зон. Благодаря этим связям осуществляется весьма многообразная, сложная и биологически важная рефлекторная регуляция дыхания и ее координация с другими функциями организма.

Различают несколько типов механорецепторов: медленно адаптирующиеся рецепторы растяжения легких, ирритантные быстро адаптирующиеся механорецепторы и J-рецепторы - "юкстакапиллярные" рецепторы легких.

Медленно адаптирующиеся рецепторы растяжения легких расположены в гладких мышцах трахеи и бронхов. Эти рецепторы возбуждаются при вдохе, импульсы от них по афферентным волокнам блуждающего нерва поступают в дыхательный центр. Под их влиянием тормозится активность инспираторных нейронов продолговатого мозга. Вдох прекращается, начинается выдох, при котором рецепторы растяжения неактивны. Рефлекс торможения вдоха при растяжении легких называется рефлексом Геринга - Брейера. Этот рефлекс контролирует глубину и частоту дыхания. Он является примером регуляции по принципу обратной связи. После перерезки блуждающих нервов дыхание становится редким и глубоким.

Ирритантные быстро адаптирующиеся механорецепторы, локализованные в слизистой оболочке трахеи и бронхов, возбуждаются при резких изменениях объема легких, при растяжении или спадении легких, при действии на слизистую трахеи и бронхов механических или химических раздражителей. Результатом раздражения ирритантных рецепторов является частое, поверхностное дыхание, кашлевой рефлекс, или рефлекс бронхоконстрикции.

J-рецепторы - "юкстакапиллярные" рецепторы легких находятся в интерстиции альвеол и дыхательных бронхов вблизи от капилляров. Импульсы от J-рецепторов при повышении давления в малом круге кровообращения, или увеличении объема интерстициальной жидкости в легких (отек легких), или эмболии мелких легочных сосудов, а также при действии биологически активных веществ (никотин, простагландины, гистамин) по медленным волокнам блуждающего нерва поступают в дыхательный центр - дыхание становится частым и поверхностным (одышка).

Важное биологическое значение, особенно в связи с ухудшением экологических условий и загрязнением атмосферы, имеют защитные дыхательные рефлексы - чихание и кашель.

Чихание. Раздражение рецепторов слизистой оболочки полости носа, например, пылевыми частицами или газообразными наркотическими веществами, табачным дымом, водой вызывает сужение бронхов, брадикардию, снижение сердечного выброса, сужение просвета сосудов кожи и мышц. Различные механические и химические раздражения слизистой оболочки носа вызывают глубокий сильный выдох - чихание, способствующее стремлению избавиться от раздражителя. Афферентным путем этого рефлекса является тройничный нерв.

Кашель возникает при раздражении механо- и хеморецепторов глотки, гортани, трахеи и бронхов. При этом после вдоха сильно сокращаются мышцы выдоха, резко повышается внутригрудное и внутрилегочное давление (до 200 мм рт. ст.), открывается голосовая щель, и воздух из дыхательных путей под большим напором высвобождается наружу и удаляет раздражающий агент. Кашлевой рефлекс является основным легочным рефлексом блуждающего нерва.

 

В регуляции дыхания большое значение имеют центры гипоталамуса. Под влиянием центров гипоталамуса происходит усиление дыхания, например, при болевых раpдражениях, при эмоциональном возбуждении, при физической нагрузке.

 

В регуляции дыхания принимают участие полушария большого мозга, которые участвуют в тонком адекватном приспособлении дыхания к меняющимся условиям существования организма.

 

(60) Гуморальная регуляция дыхания. Роль углекислоты. Механизм первого вдоха новорожденного ребенка.

 

Двуокись углерода, водородные ионы и умеренная гипоксия вызывают усиление дыхания. Эти факторы усиливают деятельность дыхательного центра, оказывая влияние на периферические (артериальные) и центральные (модулярные) хеморецепторы, регулирующие дыхание.

Артериальные хеморецепторы находятся в каротидных синусах и дуге аорты. Они расположены в специальных тельцах, обильно снабжаемых артериальной кровью. Аортальные хеморецепторы на дыхание влияют слабо и большее значение имеют для регуляции кровообращения.

Артериальные хеморецепторы являются уникальными рецепторными образованиями, на которые гипоксия оказывает стимулирующее влияние. Афферентные влияния каротидных телец усиливаются также при повышении в артериальной крови напряжения двуокиси углерода и концентрации водородных ионов. Стимулирующее действие гипоксии и гиперкапнии на хеморецепторы взаимно усиливается, тогда как в условиях гипероксии чувствительность хеморецепторов к двуокиси углерода резко снижается. Артериальные хеморецепторы информируют дыхательный центр о напряжении 02 и СО2 в крови, направляющейся к мозгу.

После перерезки артериальных (периферических) хеморецепторов у подопытных животных исчезает чувствительность дыхательного центра к гипоксии, но полностью сохраняется реакция дыхания на гиперкапнию и ацидоз.

Центральные хеморецепторы расположены в продолговатом мозге латеральнее пирамид. Перфузия этой области мозга раствором со сниженным рН резко усиливает дыхание, а при высоком рН дыхание ослабевает, вплоть до апноэ.

Центральные хеморецепторы реагируют на изменение напряжения СО2 в артериальной крови позже, чем периферические хеморецепторы, так как для диффузии СО2 из крови в спинномозговую жидкость и далее в ткань мозга необходимо больше времени. Гиперкапния и ацидоз стимулируют, а гипокапния и алкалоз - тормозят центральные хеморецепторы.

 

Механизм первого вдоха. У родившегося ребенка после перевязки пуповины прекращается газообмен через пупочные сосуды, контактирующие в плаценте с кровью матери. В крови новорожденного происходит накопление СО2, который возбуждает его дыхательный центр и вызывает первый вдох.

 

(61) Дыхание в условиях пониженного и повышенного барометрического давления и при изменении газовой среды.

 

Дыхание при подъеме на высоту.

С увеличением высоты над уровнем моря падает барометрическое давление и парциальное давление О2, однако насыщение альвеолярного воздуха водяными парами при температуре тела не изменяется. На высоте 20 000 м содержание О2 во вдыхаемом воздухе падает до нуля. Если жители равнин поднимаются в горы, гипоксия увеличивает у них вентиляцию легких, стимулируя артериальные хеморецепторы. Изменения дыхания при высотной гипоксии у разных людей различны. Возникающие во всех случаях реакции внешнего дыхания определяются рядом факторов: 1) скорость, с которой развивается гипоксия; 2) степень потребления О2 (покой или физическая нагрузка); 3) продолжительность гипоксического воздействия.

Первоначальная гипоксическая стимуляция дыхания, возникающая при подъеме на высоту, приводит к вымыванию из крови СО2 и развитию дыхательного алкалоза. Это в свою очередь вызывает увеличение рН внеклеточной жидкости мозга. Центральные хеморецепторы реагируют на подобный сдвиг рН в цереброспинальной жидкости мозга резким снижением своей активности, что затормаживает нейроны дыхательного центра настолько, что он становится нечувствительным к стимулам, исходящим от периферических хеморецепторов. Довольно быстро гиперпноэ сменяется непроизвольной гиповентиляцией, несмотря на сохраняющуюся гипоксемию. Подобное снижение функции дыхательного центра увеличивает степень гипоксического состояния организма, что чрезвычайно опасно, прежде всего для нейронов коры большого мозга.

При акклиматизации к условиям высокогорья наступает адаптация физиологических механизмов к гипоксии. К основным факторам долговременной адаптации относятся: повышение содержания СО2 и понижение содержания О2 в крови на фоне снижения чувствительности периферических хеморецепторов к гипоксии, а также рост концентрации гемоглобина.

Дыхание при высоком давлении.

При производстве подводных работ водолаз дышит под давлением выше атмосферного на 1 атм. на каждые 10 м погружения. Если человек вдыхает воздух обычного состава, то происходит растворение азота в жировой ткани. Диффузия азота из тканей происходит медленно, поэтому подъем водолаза на поверхность должен осуще­ствляться очень медленно. В противном случае возможно внутрисосудистое образование пузырьков азота (кровь «закипает») с тяжелыми повреждениями ЦНС, органов зрения, слуха, сильными болями в области суставов. Возникает так называемая кессонная болезнь. Для лечения пострадавшего необходимо вновь поместить в среду с высоким давлением. Постепенная декомпрессия может продолжаться несколько часов или суток.

Вероятность возникновения кессонной болезни может быть значительно снижена при дыхании специальными газовыми смесями, например кислородно-гелиевой смесью. Это связано с тем, что растворимость гелия меньше, чем азота, и он быстрее диффундирует из тканей, так как его молекулярная масса в 7 раз меньше, чем у азота. Кроме того, эта смесь обладает меньшей плотностью, поэтому уменьшается работа, затрачиваемая на внешнее дыхание.

 

Дыхание чистым О2.

В клинической практике иногда возникает потребность в повышении Ро2 в артериальной крови. При этом повышение парциального давления О2 во вдыхаемом воздухе оказывает лечебный эффект. Однако продолжительное дыхание чистым О2 может иметь отрицательный эффект. У здоровых испытуемых отмечаются боли за грудиной, особенно при глубоких вдохах, уменьшается жизненная емкость легких. Возможно перевозбуждение ЦНС и появление судорог.

Полагают, что кислородное отравление связано с инактивацией некоторых ферментов, в частности дегидрогеназ.

У недоношенных новорожденных при длительном воздействии избытка О2 образуется фиброзная ткань за хрусталиком и развивается слепота.

 

(62) Функциональная система, обеспечивающая постоянство газовой константы крови. Анализ ее центральных и периферических компонентов.

 

Углекислый газ, водородные ионы и умеренная гипоксия вызывают усиление дыхания за счет усиления деятельности дыхательного центра, оказывая влияние на специальные хеморецепторы. Хеморецепторы, чувствительные к увеличению напряжения углекислого газа и к снижению напряжения кислорода находятся в каротидных синусах и в дуге аорты. Артериальные хеморецепторы расположены в специальных маленьких тельцах, которые богато снабжены артериальной кровью. Большее значение для регуляции дыхания имеют каротидные хеморецепторы. При нормальном содержании кислорода в артериальной крови в афферентных нервных волокнах, отходящих от каротидных телец, регистрируются импульсы. При снижении напряжения кислорода частота импульсов возрастает особенно значительно. Кроме того, афферентные влияния с каротидных телец усиливаются при повышении в артериальной крови напряжения углекислого газа и концентрации водородных ионов. Хеморецепторы, особенно каротидных телец, информируют дыхательный центр о напряжении кислорода и углекислого газа в крови, которая направляется к мозгу.

В продолговатом мозге обнаружены центральные хеморецепторы, которые постоянно стимулируются водородными ионами, находящимися в спиномозговой жидкости. Они существенно изменяют вентиляцию легких Например, снижение рН спиномозговой жидкости на 0,01 сопровождается увеличением легочной вентиляции на 4 л/мин.

Импульсы, поступающие от центральных и периферических хеморецепторов, являются необходимым условием периодической активности нейронов дыхательного центра и соответствия вентиляции легких газовому составу крови. Последний является жесткой константой внутренней среды организма и поддерживается по принципу саморегуляции путем формирования функциональной системы дыхания. Системообразующим фактором этой системы является газовая константа крови. Любые ее изменения являются стимулами для возбуждения рецепторов, расположенных в альвеолах легких, в сосудах, во внутренних органах и т. д. Информация от рецепторов поступает в ЦНС, где осуществляется ее анализ и синтез, на основе которых формируются аппараты реакций. Их совокупная деятельность приводит к восстановлению газовой константы крови. В процесс восстановления этой константы включаются не только органы дыхания (особенно ответственные за изменение глубины и частоты дыхания), но и органы кровообращения, выделения и другие, представляющие в совокупности внутреннее звено саморегуляции. При необходимости включается и внешнее звено в виде определенных поведенческих реакций, направленных на достижение общего полезного результата - восстановление газовой константы крови.

 

Функциональная система, обеспечивающая постоянство питательных веществ в крови. Пищеварение как главный компонент функциональной системы, поддерживающей постоянный уровень питательных веществ в организме.

 

Функциональная система, поддерживающая уровень питательных веществ в организме, функционирует по принципу обратной связи. При нехватке питательных веществ в организме, раздражаются рецепторы тканей, органов, сосудов. В рецепторах генерируются ПД, которые в виде нервных импульсов по афферентным нервам, а затем по проводящим путям СМ, поступают в пищеварительный центр продолговатого мозга, гипоталамуса и КБП. В КБП происходит анализ и синтез поступившей информации, и на основе этого формируется соответствующая поведенческая реакция – поиск пищи. После того, как найдена и употреблена пища, в ЖКТ она переваривается, усваивается, и опять рецепторы воспринимают насыщение тканей органов питательными веществами. В рецепторах опять генерируются потенциалы действия, которые поступают вначале в подкорку, где происходит первичный анализ поступившей информации, затем в КБП, где формируется соответствующая поведенческая реакция.

 

Функциональная система питания – динамическая совокупность механизмов, обеспечивающих сложное пищедобывательное поведение и поддерживающих относительно постоянный уровень содержания питательных веществ в организме. В нее входят пищевой центр, ЖКТ, пищевое депо, ОДА, а также органы дыхания и кровообращения, обеспечивающие жизнедеятельность указанных структур.

 

Пищеварение – сложный физиологический процесс (совокупность процессов), обеспечивающий физическую и химическую обработку пищевых продуктов (пищи), превращение их в компоненты, лишенные видовой специфичности, пригодные для всасывания и участия в обмене веществ.

 


Поделиться:

Дата добавления: 2015-01-19; просмотров: 190; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты