Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Принцип действия генератора и двигателя постоянного тока




Раздел 5 коллекторные машины

Принцип действия и устройство коллекторных

Машин постоянного тока

Обмотки якоря машин постоянного тока

Магнитное поле машины постоянного тока

Коммутация в машинах постоянного тока

Коллекторные генераторы постоянного тока

Коллекторные двигатели

Машины постоянного тока

Специального назначения

• Охлаждение электрических машин
Электрические машины по­стоянного тока используются как в качестве генераторов, так и в качестве двигателей. Наибольшее применение име­ют двигатели постоянного то­ка, области применения и диапазон мощности которых достаточно широки: от долей ватт (для привода устройств автоматики) до нескольких тысяч киловатт (для привода прокатных станов, шахтных подъемников и других меха­низмов). Двигатели постоян­ного тока широко используют­ся для привода подъемных средств в качестве крановых двигателей и привода транс­портных средств в качестве тяговых двигателей. Основ­ные преимущества двигате­лей постоянного тока по срав­нению с бесколлекторными двигателями переменного то­ка — хорошие пусковые и ре­гулировочные свойства, воз­можность получения частоты вращения более 3000 об/мин, а недостатки — относительно высокая стоимость, некоторая сложность в изготовлении и пониженная надежность. Все эти недостатки машин посто­янного тока обусловлены на­личием в них щеточно-коллекторного узла, который к тому же является источником ра­диопомех и пожароопасности. Эти недостатки ограничиваю! применение машин постоянного тока.

В данном разделе рассмотре­ны машины постоянного тока общего назначения, получив­шие наибольшее применение в современном электроприво­де. Рассмотрены также неко­торые виды машин постоянно­го тока специального назна­чения, главным образом при­меняемые в устройствах ав­томатики.

В заключение следует отме­тить, что наибольшее практи­ческое применение получили машины постоянного тока в качестве электродвигателей. Объясняется это возрастаю­щим применением в качестве источников постоянного тока полупроводниковых выпрями­тельных устройств, имеющих более высокие технико-эконо­мические показатели по срав­нению с коллекторными гене­раторами постоянного тока.

Глава 24

Принцип действия и устройство коллекторных машин постоянного тока

Принцип действия генератора и двигателя постоянного тока

Характерным признаком коллекторных машин является наличие у них коллектора — механическо­го преобразователя переменного тока в постоянный и наоборот. Необходимость в таком преобразователе объясняется тем, что в обмотке якоря коллекторной машины должен протекать переменный ток, так как только в этом случае в машине происходит непре­рывный процесс электромеханического преобразо­вания энергии.

Рассмотрим принцип действия коллекторного генератора постоянного тока. На рис. 24.1 изобра­жена упрощенная модель такого генератора: между полюсами N и S постоянного магнита находится вращающаяся часть генератора — якорь, вал кото­рого посредством шкива и ременной передачи меха­нически связан с приводным двигателем (на рисунке не показан) — источником механической энергии. В двух продольных пазах на сердечнике якоря распо­ложена обмотка в виде одного витка a,b,c,d, концы которого присоединены к двум медным изолирован­ным друг от друга полукольцам, образующим про­стейший коллектор. На поверхность коллектора на­ложены щетки А и В, осуществляющие скользящий контакт с коллектором и связывающие генератор с внешней цепью, куда включена нагрузка сопротив­лением R.

Предположим, что приводной двигатель враща­ет якорь генератора против часовой стрелки, тогда в витке на якоре, вращающемся в магнитном поле по­стоянного магнита, наводится ЭДС, мгновенное зна­чение которой , а направление для положе­ния якоря, изображенного на рисунке, указано стрелками.

 

 

Рис. 24.1. Упрощенная модель коллекторной машины

 

В процессе работы генератора якорь вращается и виток a,b,c,d, занимает разное пространственное по­ложение, поэтому в обмотке якоря наводится переменная ЭДС. Если бы в машине не было коллектора, то ток во внешней цепи (в нагрузке R)был бы переменным, но посредством коллектора и щеток переменный ток обмотки якоря преобразуется в пульсирующий ток во внешней цепи генератора, т. е. ток, неизменный по направлению. При положении витка якоря, пока­занном на рис. 24.1, ток во внешней цепи (в нагрузке) направлен от щетки А к щетке В; следовательно, щетка А является положительной, а щетка В -- отрицательной. После поворота якоря на 1800 (рис. 24.2, а)направление тока в витке якоря изменится на обратное, однако полярность щеток, а следовательно, и направление не тока во внешней цепи (в нагрузке) останутся неизменными (рис. 24.2, б). Объясняется это тем, что в тот момент, когда ток в витке якоря меняет свое направление, происходит смена коллекторных пластин под щетками. Таким образом, под щеткой А всегда находится пластина, соединенная с проводником, расположен­ным под северным магнитным полюсом, а под щеткой В -пластина, соединенная с проводником, расположенным под юж­ным полюсом. Благодаря этому полярность щеток генератора остается неизменной независимо от положения витка якоря. Что же касается пульсаций тока во внешней цепи, то они намного ослаб­ится при увеличении числа витков в обмотке якоря при их рав­номерном распределении по поверхности якоря и соответствую­щем увеличении числа пластин в коллекторе.

 

Рис. 24-2. К принципу действия генератора постоянного тока:

___________ ЭДС и ток в обмотке якоря;

_ _ _ _ _ _ _ ЭДС и ток во внешней цепи генератора

 

 

В соответствии с принципом обратимости электрических ма­шин упрощенная модель машины постоянного тока может быть использована в качестве двигателя постоянного тока. Для этого необходимо отключить нагрузку генератора R и подвести к щеткам машины напряжение от источника постоянного тока. Например, если к щетке А подключить зажим «плюс», а к щетке В «минус», то в обмотке якоря появится ток , направление которого показано на рис. 24.3. В результате взаимодействия этого тока с магнитным полем постоянного магнита (полем возбуждения) поя­вятся электромагнитные силы , создающие на якоре электро­магнитный момент М и вращающие его против часовой стрелки. После поворота якоря на 1800 электромагнитные силы не изменят своего направления, так как одновременно с переходом каждого проводника

 

Рис. 24.3. К принципу действия двигателя посто­янного тока

 

обмотки якоря из зоны одного магнитного полюса в зону другого полюса в этих проводниках меняется направление тока.

Таким образом, назначение коллектора и щеток в двигателе постоянного тока — изменять направ­ление тока в проводниках обмотки яко­ря при их переходе из зоны магнитного полюса одной полярности в зону полю­са другой полярности.

Рассмотренная упрощенная модель машины постоянного тока не обеспечи­вает двигателю устойчивой работы, так как при прохождении проводниками обмотки якоря геометрической нейтра­ли (рис. 24.3) электромагнитные силы = 0 (магнитная индукция в середине межполосного пространства равна нулю). Однако с увеличением числа проводников в обмотке якоря (при равномерном их распределении на поверхности якоря) и числа пластин коллектора вращение якоря двигателя становится устойчивым и равномерным.


Поделиться:

Дата добавления: 2015-01-19; просмотров: 496; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты