Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Жизненный цикл медиаторов нервной системы




Читайте также:
  1. C2 Покажите на трех примерах наличие многопартийной политической системы в современной России.
  2. II. Системы, развитие которых можно представить с помощью Универсальной Схемы Эволюции
  3. III. Требования к организации системы обращения с медицинскими отходами
  4. Oсoбеннoсти и прoблемы функциoнирoвaния вaлютнoй системы Республики Белaрусь
  5. А). Системы разомкнутые, замкнутые и комбинированные.
  6. А. Оппозиция логичных и нелогичных действий как исходноеотношение социальной системы. Теория действия Парето и теория действия Вебера
  7. Авиационно-транспортной системы
  8. Автоматизированные системы обработки данных
  9. Автоматизированные системы обработки экономической и финансовой информации
  10. Автоматизированные системы управления в здравоохранении (клиничекий, городсокй. Областной, уровни управления.

Жизненный цикл медиаторов нервной системы включает следующие «стандарные» стадии: синтез, загрузку в везикулы и транспорт в пресинаптическое окончание; выделение в синаптическую щель; связывание с рецептором на постсинаптической мембране; инактивацию.

Образование медиатора часто происходит непосредственно в пресинаптическом окончании. Это возможно тогда, когда процесс синтеза является химически относительно простым (осуществляется в 1—2 стадии) и не требует каких-либо труднодоступных предшественников. Если эти условия не выполняются, образование медиатора идет в теле нейрона (рис. 3.18). Это наиболее характерно для пептидных медиаторов, возникающих в результате «вырезания» из более крупных белковых молекул.

С синтезом каждого конкретного медиатора связаны специфические ферменты, осуществляющие соответствующие реакции. От их количества и активности в конечном счете зависит активность медиаторной системы. Другой важный фактор — наличие молекул-предшественниц. В этом случае дефицит медиаторов, образуемых из незаменимых веществ (тех, которые можно получить только с едой), может иметь пищевое происхождение.

Синтезированные в теле нейрона молекулы медиатора переносятся сначала в ЭПС, а затем в комплекс Гольджи, который обеспечивает экзоцитоз медиаторов, предварительно упаковывая их в мембранные пузырьки-везикулы. Размер пузырьков и количество в них молекул медиатора стабильны в каждом конкретном нейроне.

Рис. 3.18. Синтез медиатора: а — в теле нейрона; б — в пресинаптическом окончании; 1 — ядро клетки; 2 — ЭПС; 3 — везикулы с медиатором; 4 — молекулы медиатора; 5 — комплекс Гольджи; 6 — пустые везикулы

 

Образовавшиеся везикулы переносятся в пресинаптические окончания. Ключевую роль в этом процессе играют направляющие микротрубочки. Пузырьки с медиатором движутся по этим «рельсам» с помощью механизмов, сходных с работой сократимых мышечных белков. Скорость такого транспорта довольно велика — до нескольких см/ч.

В случае, когда медиатор синтезируется сразу в пресинаптическом окончании, комплекс Гольджи способен формировать пустые везикулы, которые аналогичным образом переносятся по аксону. Заполнение таких пузырьков медиатором осуществляется непосредственно в пресинаптическом окончании (за счет работы специальных молекулярных насосов (рис. 3.18, б)).



Везикулы — это не только удобная форма транспорта веществ, но и способ упорядочить, сделать количественно стабильным выброс медиатора в синаптическую щель. Число скапливающихся в пресинаптическом окончании везикул измеряется десятками тысяч, что также стабилизирует процессы передачи сигналов; истощение запасов медиатора даже при интенсивном проведении информации происходит весьма редко (обычно на фоне действия специальных фармакологических агентов).

Каждый нейрон производит только один основной медиатор (ацетилхолин, дофамин и т. п.). Однако нередко можно обнаружить присутствие в пресинаптическом окончании и других веществ, способных к передаче нервных сигналов. Это комедиаторы (например, пептиды); они обнаруживаются в очень небольших количествах и обычно находятся в везикулах, отличающихся по форме и размеру от пузырьков с основным медиатором.

Выброс содержимого везикул запускается в момент прихода в пресинаптическое окончание потенциала действия и реализуется в несколько этапов. Первый из них заключается в открытии потенциал-зависимых Ca2+-каналов, которые расположены на «внешней» мембране пресинаптического окончания и открываются при его деполяризации в момент прихода ПД (рис. 3.19). В результате наблюдается вход в клетку определенной порции ионов Ca2+, и их содержание внутри окончания возрастает в 10—100 раз. Чем выше концентрация Ca2+ во внешней среде, тем больше число вошедших ионов; через эти же каналы способны проникать ионы Mg2+, конкурируя с кальцием. Следовательно, появление в межклеточной среде магния уменьшает итоговое число вошедшего в окончание кальция.



Основное назначение ионов Ca2+ в пресинаптическом окончании — это воздействие на сложный белковый комплекс, встроенный в мембрану везикул. Этот комплекс включает белки, ответственные за фиксацию пузырька в цитоплазме и за его контакт с пресинаптической мембраной. Под действием Ca2+ (для этого нужно четыре иона) везикула приходит в движение. Достигая пресинаптической мембраны, пузырек «слипается» с ней, в результате чего медиатор попадает в синаптическую щель. Весь этот процесс протекает очень быстро — в течение 1—5 мс, а примерно через 10 с можно наблюдать процесс восстановления везикул: они отделяются от мембраны и возвращаются в пресинаптическое окончание. В дальнейшем эти пустые пузырьки могут быть вновь заполнены медиатором.

 

Запустить выброс содержимого везикул чрезвычайно важно, но не менее важно быстро остановить этот процесс. Только в этом случае возможно точное соответствие между числом пришедших в пресинаптическое окончание ПД и количеством выделившегося медиатора. Функцию остановки выброса выполняют особые молекулярные насосы, удаляющие ионы Ca2+ из цитоплазмы окончания. Такие насосы находятся на мембранах каналов ЭПС и митохондрий. Перенося кальций внутрь этих органоидов, они прекращают его действие на везикулы.



Отравление Ca2+-насосов ведет к гиперактивности синапса, продолжающейся до полного истощения запасов медиатора. Аналогичное действие оказывают токсины, блокирующие потенциал-зависимые Ca2+-каналы в открытом положении.

Токсин ботулиновой бактерии (ботулотоксин) известен как соединение, вызывающее тяжелейшие пищевые отравления. Проникая в синапс, он блокирует белки, отвечающие за контакт везикулы с пресинаптической мембраной, в результате чего прекращается всякая передача нервного сигнала, развиваются параличи.

Попав в синаптическую щель, медиатор менее чем за 1 мс вступает во взаимодействие с пресинаптической мембраной, соединяясь с встроенными в нее специализированными белковыми рецепторами. Пространственная организация рецептора предусматривает существование у него активного центра — углубления в белковом клубке, имеющего определенную форму и распределение зарядов. Ему строго соответствует пространственная конфигурация медиатора и распределение зарядов на его молекуле. В результате активный центр рецептора и медиатор способны формировать комплекс. Непосредственным следствием этого является возбуждение рецептора, а затем — развитие постсинаптических потенциалов и запуск ПД.

Выделяют два типа рецепторов — ионотропные и метаботропные.

Возбуждение метаботропного рецептора выражается в изменении внутриклеточного метаболизма, т. е. течения биохимических реакций. С внутренней стороны мембраны к такому рецептору присоединен целый ряд других белков, выполняющих ферментативные и частью передающие («посреднические») функции (рис. 3.20). Белки-посредники относятся к G-белкам. Под влиянием возбужденного рецептора G-белок воздействует на белок-фермент, обычно переводя его в «рабочее» состояние. В результате запускается химическая реакция: молекула-предшественник превращается в сигнальную молекулу — вторичный посредник.

 

 
Рис. 3.20. Схема строения и функционирования метаботропного рецептора: 1 — медиатор; 2 — рецептор; 3 — ионный канал; 4 — вторичный посредник; 5 — фермент; 6 — G-белок; →— направление передачи сигнала

 

Вторичные посредники — это мелкие, способные к быстрому перемещению молекулы или ионы, передающие сигнал внутри клетки. Этим они отличаются от «первичных посредников» — медиаторов и гормонов, передающих информацию от клетки к клетке. Наиболее известным вторичным посредником является цАМФ (циклическая аденозинмонофосфорная кислота), образуемая из АТФ с помощью фермента аденилатциклазы. Похожа на него цГМФ (гуанозинмонофосфорная кислота). Другими важнейшими вторичными посредниками являются инозитолтрифосфат и диацилглицерол, образуемые из компонентов клеточной мембраны под действием фермента фосфолипазы С. Чрезвычайно велика роль Ca2+, входящего в клетку снаружи через ионные каналы или высвобождающегося из особых мест хранения внутри клетки («депо» кальция). В последнее время много внимания уделяется вторичному посреднику NO (оксиду азота), который способен передавать сигнал не только внутри клетки, но и между клетками, легко преодолевая мембрану, в том числе от постсинаптического нейрона к пресинаптическому.

Заключительный шаг в проведении химического сигнала — воздействие вторичного посредника на хемочувствительный ионный канал. Это воздействие протекает либо непосредственно, либо через дополнительные промежуточные звенья (ферменты). В любом случае происходит открытие ионного канала и развитие ВПСП либо ТПСП. Продолжительность и амплитуда их первой фазы будет определяться количеством вторичного посредника, которое зависит от количества выделившегося медиатора и длительности его взаимодействия с рецептором.

Таким образом, механизм передачи нервного стимула, используемый метаботропными рецепторами, включает в себя несколько последовательных этапов. На каждом из них возможна регуляция (ослабление либо усиление) сигнала, что делает реакцию постсинаптической клетки более гибкой и адаптированной к текущим условиям. Вместе с тем это же приводит к замедлению процесса передачи информации. Вот почему в ходе эволюции возникла потребность в более быстром пути проведения сигналов, в результате чего появились ионотропные рецепторы.

В случае ионотропного рецептора чувствительная молекула содержит не только активный центр для связывания медиатора, но также ионный канал (рис. 3.21). Воздействие «первичного посредника» на рецептор приводит к быстрому открыванию канала и развитию постсинаптического потенциала.

Инактивация — заключительный этап жизненного цикла медиатора. Смысл этой стадии состоит в прекращении его действия на рецептор (прерывание передачи сигнала). Процессы инактивации медиатора реализуются при участии специализированных ферментов и транспортных белков (рис. 3.22).

В более простом случае инактивация осуществляется прямо в синаптической щели, когда фермент 2 быстро разрушает все свободно «плавающие» молекулы медиатора. Кроме этого, медиатор может быть удален с активных центров постсинаптических рецепторов 1 еще двумя способами: путем обратного всасывания в пресинаптическое окончание, которое осуществляется особыми белками-насосами 3 и путем всасывания в глиальные клетки, которое также происходит за счет деятельности белков-насосов 5.

В случае переноса внутрь глиальных клеток медиатор разрушается специализированным ферментом.

В случае возврата в пресинаптическое окончание («обратный захват») он также может быть разрушен, но может и повторно «загружаться» в пустые везикулы 4. Это позволяет наиболее экономно расходовать те медиаторы, синтез которых связан с определенными проблемами (недостаток предшественника, длинная цепочка реакций).

Скорость процесса инактивации определяет общее время воздействия медиатора на рецептор, от которого в конечном итоге зависит амплитуда постсинаптических потенциалов, запуск ПД и продолжение проведения сигнала по нейронной сети. При повреждении элементов системы инактивации наблюдается значительное увеличение эффективности синаптической передачи, так как выделившийся медиатор существенно дольше воздействует на рецепторы и амплитуда ВПСП либо ТПСП заметно возрастает.

Вещества, влияющие на различные этапы жизненного цикла медиаторов, имеют огромное значение для жизни человека. Именно они образуют группу психотропных препаратов — соединений, влияющих на различные аспекты деятельности мозга: общий уровень активности, память, эмоциональные переживания. При этом наиболее часто используются вещества, изменяющие взаимодействие рецептора и медиатора, а также влияющие на хемочувствительные ионные каналы.

При введении молекул, сходных по структуре с медиатором, наблюдается их соединение с активными центрами соответствующих рецепторов и последующее возбуждение рецепторов (рис. 3.23). Медиатор 1 присоединяется к рецептору 2, что приводит к воздействию на ионный канал 3 (направление воздействия отмечено стрелкой; рис. 3.23, а); агонист 4 присоединяется к рецептору, что также приводит к передаче сигнала на ионный канал (рис. 3.23, б); конкурентный антагонист 5 не позволяет медиатору соединиться с рецептором (отмечено перечеркнутой стрелкой; рис. 3.23, в); неконкурентный антагонист 6 блокирует ионный канал, что также не позволяет развиться эффектам медиатора (отмечено перечеркнутой стрелкой; рис. 3.23, г). В результате эффект применяемого препарата оказывается аналогичен действию самого медиатора. Вещества такого рода называют агонистами медиатора, их влияние на синапс нередко оказывается очень длительным и эффективным. Это объясняется тем, что прочность связывания агониста с рецепторами нередко больше, чем у медиатора, а системы инактивации не способны быстро опознать агонист и убрать его из синаптической щели

 
 
Рис. 3.23. Механизмы деятельности агонистов и антагонистов медиаторов

 

В более сложном случае вводимые молекулы лишь частично похожи на медиатор. Тогда, соединяясь с активными центрами рецепторов, они будут их занимать (прекращать к ним доступ медиатора; конкурировать с ним), но не будут возбуждать рецептор. В результате эффект применяемого препарата будет противоположен действию медиатора. Вещества такого рода называют конкурентными антагонистами медиатора. Существует также понятие неконкурентного антагониста (вводимый препарат мешает работе медиатора, блокируя хемочувствительные ионные каналы).

Часть агонистов и антагонистов медиаторов являются веществами природного происхождения. Их существование — результат длительных эволюционных процессов, в ходе которых одни живые организмы (особенно растения) «изобретали» вещества, защищающие их от поедания другими организмами. Природными психотропными препаратами являются также яды животных-охотников (змеи, пауки).

Вторая часть агонистов и антагонистов — синтетические соединения, создаваемые человеком. В ходе их разработки химикам и фармакологам приходится учитывать целый ряд требований. Во-первых, в структуре такого вещества должен присутствовать «ключевой» участок, соответствующий молекуле медиатора. Во-вторых, такой препарат должен быть устойчив к действию систем инактивации. В-третьих, он должен проникать через барьеры организма — гематоэнцефалический и желательно кишечный. Только в этом случае можно достичь мозга при системном введении — в виде таблетки либо инъекции. В настоящее время агонисты и антагонисты медиаторов (а также соединения, влияющие на синаптическую передачу другими путями) широко применяются в клинике. Вместе с тем в больших дозах многие из них являются наркотиками и ядами, что также свидетельствует о необходимости их серьезного изучения.

8. Взаимодействие медиатора с рецептором. Типы рецепторов: ионотропные и метаботропные (особенности строения и функции). Агонисты и антагонисты медиаторов.


Дата добавления: 2015-01-29; просмотров: 134; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.015 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты