![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Напор и характеристики вихревых насосов. Гидравлическая радиальная сила⇐ ПредыдущаяСтр 14 из 14 Принцип действия вихревого и центробежного насосов аналогичен, потому что у обоих типов насосов существует аналогичная органическая связь между рабочими параметрами, что может вытекать только из уравнения Эйлера для турбомашин. Следовательно, к вихревым насосам применим закон об изменении момента количества движения со всеми вытекающими отсюда последствиями. Напор вихревого насоса возрастает с увеличением числа лопастей рабочего колеса и длины кольцевого канала 4 (рис. 3.6). При одной и той же окружной скорости напор, создаваемый рабочим колесом вихревого насоса, больше напора колеса центробежного насоса. Это является следствием неоднократного движения одной и той же частицы жидкости в межлопаточных каналах колеса за время одного его оборота. Частица жидкости совершает сложное винтообразное движение по траектории ABCDEFK (рис. 3.6 и 3.8), на которое накладывается вихревое движение относительно оси Ох (рис. 3.8) в межлопаточных каналах, что затрудняет определение параметров вихревого насоса аналитическим путем. Полагая для упрощения, что вектор абсолютной скорости входа жидкости в межлопаточные каналы направлен по радиусу колеса, получим уравнение для определения теоретического напора
Если вместо коэффициента 3 в приведенную выше формулу подставить число последовательных прохождений частицы жидкости через межлопаточные каналы i, то напор колеса вихревого насоса при одной и той же форме лопаток и окружной скорости будет в i раз больше, чем у колеса центробежного насоса.
где Учтя при помощи коэффициента e, как и у центробежных насосов, влияние конечного числа лопастей на напор, а также гидравлический КПД насоса hг, получим действительный напор вихревого насоса
где Для рабочих колес закрытого типа (см. рис. 3.7) коэффициент напора Для вихревых насосов аналитически определить коэффициент напора в настоящее время невозможно, поэтому напорно-расходные и другие действительные характеристики получают опытным путем.
Характер зависимости между основными параметрами вихревого насоса, т. е. внешний вид графиков, определяется главным образом коэффициентом напора Учет потерь энергии у вихревых насосов производится при помощи тех же КПД, что и у центробежных. Небольшая величина полного КПД вихревого насоса может быть объяснена наличием больших гидравлических потерь энергии, вызванных вихреобразованиями в проточных каналах корпуса и рабочего колеса, а также трением жидкости о стенки корпуса насоса. Приращение энергии жидкости в вихревом насосе происходит непрерывно на всем пути движения. Если при входе во всасывающий патрубок давление жидкости было равно р1, то в межлопаточных каналах оно постепенно увеличивается до давления р2. Изменение давления прямо пропорционально центральному углу Давление жидкости на боковые поверхности взаимно уравновешивается, и поэтому у вихревых насосов нет гидравлической осевой силы. Давление на торцовую поверхность рабочего колеса от сечения АВ до сечения ЕМ постепенно увеличивается, следствием чего является гидравлическая радиальная сила R, которая равна
где d2 и b – соответственно наружный диаметр рабочего колеса и его ширина на том же диаметре. Учет гидравлической радиальной силы следует производить при расчете опорных подшипников и прочностных размеров вала насоса.
|