КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Построение нейронной сетиПри построении модели ИНС прежде всего необходимо точно определить задачи, которые будут решаться с ее помощью. В настоящее время нейросетевые технологии успешно применяются для прогнозирования, распознавания и обобщения. Первым этапом построения нейросетевой модели является тщательный отбор входных данных, влияющих на ожидаемый результат. Из исходной информации необходимо исключить все сведения, не относящиеся к исследуемой проблеме. В то же время следует располагать достаточным количеством примеров для обучения ИНС. Существует эмпирическое правило, которое устанавливает рекомендуемое соотношение X между количеством обучающих примеров, содержащих входные данные и правильные ответы, и числом соединений в нейронной сети: X<10. Для факторов, которые включаются в обучающую выборку, целесообразно предварительно оценить их значимость, проведя корреляционный и регрессионный анализ, и проанализировать диапазоны их возможных изменений. На втором этапе осуществляется преобразование исходных данных с учетом характера и типа проблемы, отображаемой нейросетевой моделью, и выбираются способы представления информации. Эффективность нейросетевой модели повышается, если диапазоны изменения входных и выходных величин приведены к некоторому стандарту, например [0,1] или [-1,1]. Третий этап заключается в конструировании ИНС, т.е в проектировании ее архитектуры (число слоев и число нейронов в каждом слое). Структура ИНС формируется до начала обучения, поэтому успешное решение этой проблемы во многом определяется опытом и искусством аналитика, проводящего исследования. Четвертый этап связан с обучением сети, которое может проводиться на основе конструктивного или деструктивного подхода. В соответствии с первым подходом обучение ИНС начинается на сети небольшого размера, который постепенно увеличивается до достижения требуемой точности по результатам тестирования. Деструктивный подход базируется на принципе «прореживания дерева», в соответствии с которым из сети с заведомо избыточным объемом постепенно удаляют «лишние» нейроны и примыкающие к ним связи. Этот подход дает возможность исследовать влияние удаленных связей на точность сети. Процесс обучения нейронной сети представляет собой уточнение значений весовых коэффициентов и для отдельных узлов на основе постепенного увеличения объема входной и выходной информации. Началу обучения должна предшествовать процедура выбора функции активации нейронов, учитывающая характер решаемой задачи. В частности, в трехслойных перцептронах на нейронах скрытого слоя применяется в большинстве случаев логистическая функция, а тип передаточной функции нейронов выходного слоя определяется на основе анализа результатов вычислительных экспериментов на сети. Индикатором обучаемости ИНС может служить гистограмма значений межнейронных связей [13]. На пятом этапе проводится тестирование полученной модели ИНС на независимой выборке примеров.
|