Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Основные сведения. Рассмотрим бюджеты n стран, которые обозначим как x1, x2, , xn.

Читайте также:
  1. Cent; Основные законы над множествами
  2. I. Основные признаки и систематика водорослей.
  3. I. Основные принципы метода электронной микроскопии
  4. I. ОСНОВНЫЕ РЕЗУЛЬТАТЫ БЮДЖЕТНОЙ ПОЛИТИКИ В 2010 ГОДУ И В НАЧАЛЕ 2011 ГОДА
  5. I. Основные термины курса
  6. I.2. Стадия создания и основные сведения о проектировании
  7. II. Основные документы операции финансового лизинга
  8. II. ОСНОВНЫЕ ЗАДАЧИ КУРСА ФИЗИКИ В ПОДГОТОВКЕ ИНЖЕНЕРА
  9. II. Основные направления региональной политики.
  10. II. ОСНОВНЫЕ ПРОБЛЕМЫ И ВЫЗОВЫ БЮДЖЕТНОЙ ПОЛИТИКИ

Рассмотрим бюджеты n стран, которые обозначим как x1, x2, … , xn.

Предположим, что национальный доход xj страны j затрачивается на закупку товаров внутри страны и на импорт из других стран.

Обозначим через xij количество средств страны j расходуемое на закупку товаров из страны i, при этом xjj – затраты на закупку товаров внутри страны j. Тогда сумма всех затрат страны j, идущее на закупку товаров как внутри страны, так и на импорт из других стран должна равняться национальному доходу страны xj, т.е.

, j = 1, 2,…, n . (4)

Разделив обе части равенства (4) на xj и введя коэффициенты получим

, j = 1, 2,…, n (5)

Коэффициенты равны доли национального дохода страны j расходуемую на закупку товаров у страны i.

Матрица A коэффициентов

(6)

называется структурной матрицей торговли. Понятно, что сумма элементов каждого столбца равна единице.

С другой стороны, количество средств страны j расходуемое на закупку товаров из страны i и равное xij, является выручкой для страны i за свой товар, который у нее закупила страна j. Суммарная выручка i-ой страны равна

, i = 1, 2,…, n (7)

Так как , то и равенство (7) можно записать в виде

, i = 1, 2,…, n . (8)

Международная торговля называется сбалансированной, если сумма платежей (затрат) каждого государства равна его суммарной выручке от внешней и внутренней торговли.

В сбалансированной системе международной торговли не должно быть дефицита, другими словами, у каждой страны выручка от торговли должна быть не меньше ее национального дохода, т.е.

, i = 1, 2,…, n .

Одновременное выполнение этих неравенств может иметь место только в том случае, если

, i = 1, 2,…, n , (9)

т.е. у всех торгующих стран выручка от внешней и внутренней торговли должна совпадать с национальным доходом.

Равенства (9), с использованием (8), можно записать в матричном виде

AX = X (10)

где А – структурная матрица (6) международной торговли; Х – вектор национальных доходов стран

.

Матричное уравнение (10) соответствует задаче на собственное значение и собственный вектор матрицы А. Очевидно, что собственное значение матрицы А, согласно уравнению (10), равно 1, а собственный вектор, соответствующий этому собственному значению, равен Х.



Таким образом, баланс в международной торговле достигается тогда, когда собственное значение структурной матрицы международной торговли равно единице, а вектор национальных доходов торгующих стран является собственным вектором, соответствующим этому единичному собственному значении.

С помощью линейной модели международной торговли можно, зная структурную матрицу международной торговли А найти такие величины национальных доходов торгующих стран (вектор Х), чтобы международная торговля была сбалансированной.


Дата добавления: 2015-08-05; просмотров: 13; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Вычисление вектора валового выпуска X. | Моделирование с использованием технологии Excel.
lektsii.com - Лекции.Ком - 2014-2019 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты