![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Кинематические элементы движущейся жидкостиОсновной кинематической характеристикой гидродинамического поля является линия тока - кривая, в каждой точке которой вектор скорости направлен по касательной к кривой. И ходя из данного определения можно записать дифференциальное уравнение линии Если через некоторую неподвижную в пространстве кривую провести линии тока, то полученная поверхность называется поверхностью тока, а образованное этой поверхностью тело будет называться трубкой тока. Жидкость, наполняющая трубку тока, называется элементарной струйкой. Поскольку линии тока никогда не пересекаются, то поверхность трубки тока является непроницаемой сечение элементарной струйки в единицу времени называется расходом элементарной струйки.
где: время
Гидродинамическое поле считается потенциальным (безвихревым), если в этом поле отсутствует вихревое движение жидкости. В потенциальном поле может существовать лишь поступательное или криволинейное движение жидкости. 3.3 Уравнение неразрывности жидкости Если в гидродинамическом поле отсутствуют вихри, то; для такого поля можно записать уравнение, связывающее параметры движущейся жидкости (плотность жидкости) с параметрами, характеризующими условия движения жидкости. Вывод такого уравнения основан на представлении жидкости как сплошной непрерывной среды, в силу чего такое уравнение получило название уравнения неразрывности. Для этой цели выделим в пространстве малый элемент жидкой среды в виде па параллелепипеда пусть будут параллельны координатным плоскостям. В центре элемента в данный момент времени будет находиться частица жидкости, плотность которой равна р, а вектор скорости движения и направлен таким образом, что жидкость втекает внутрь элемента через левую, нижнюю и переднюю грани элемента и вытекает через противоположные грани. Будем считать также, что размер элемента достаточно мал, и можно допустить, что в пределах этого элемента изменение плотности жидкости и скорости её движения будет прямо пропорционально расстоянию от центра элемента. Одновременно размеры граней будут достаточно велики по сравнению с точкой, что позволит утверждать, что плотность жидкости и скорость во всех точках граней будут одинаковыми, как и плотность жидкости в пределах соответствующих граней. Тогда произведение плотности жидкости на вектор скорости (импульс) в специальной литературе часто называют вектором массовой скорости ри. В таком случае проекция вектора массовой скорости в центре левой грани элемента на ось ОХ будет равна: а проекция вектора массовой скорости в центре правой грани элемента на ось ОХ:
Масса жидкости, поступившая через левую грань элемента за малый интервал времени dt\ масса жидкости, вытекшая через правую грань элемента за малый интервал времени dt: Изменение массы жидкости внутри элемента при движении жидкости вдоль оси ОХ: Аналогично, изменение массы жидкости внутри элемента при движении жидкости вдоль оси OY: 1, и вдоль оси OZ: Окончательно, изменение массы жидкости внутри элемента при движении жидкости в произвольном направлении:
Величина плотности жидкости в начальный момент (до начала движения жидкости t = Q) - р, а по истечении бесконечно малого интервала времени (т.е. Масса жидкости в объёме выделенного элемента в начальный момент времени: для времени Изменение массы жидкости за бесконечно малый интервал времени dt:
откуда для наиболее общего случая нестационарного поля уравнение неразрывности запишется в следующем виде: и для частного случая - стационарного поля
В векторной форме уравнения неразрывности жидкости запишутся в следующем виде:
|