КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Импульсный методВ импульсном методе зондирующий сигнал представляет собой периодическую последовательность коротких радиоимпульсов длительности т, повторяющихся с периодом Т (см. и3 на рис. 2.6), причем обычно Т приблизительно на три порядка больше т. Такая последовательность радиоимпульсов вырабатывается генератором сверхвысокой частоты ГСВЧ (рис. 2.7), модулируемым- импульсами и2 импульсного модулятора ИМ, который запускается весьма короткими пусковыми импульсами ut (рис. 2.6), вырабатываемыми специальным генератором пусковых импульсов ГПИ. В связи с тем что в импульсной системе излучение зондирующих и прием отраженных сигналов разнесены во времени, обычно используется приемопередающая антенна А, переключаемая с приема на передачу и обратно специальным антенным коммутатором АК. Зондирующие радиоимпульсы поступают через этот антенный коммутатор в антенну и излучаются в виде электромагнитных волн в направлении, определяемом ее положением в пространстве и диаграммой направленности. Эти волны в процессе своего распространения при встрече с любым объектом отражаются на него, и какая-то (обычно малая по энергии) их часть -поступает в антенну с временным запаздыванием, определяемым дальностью объекта отражения, из нее через антенный коммутатор в радиоприемное устройство РПрУ, а затем на некоторое выходное устройство — индикатор дальности ИД (рис. 2.7).
Этот индикатор ИД в простейшем случае выполняется на электронно-лучевой трубке с электростатическим отклонением и содержит, кроме указанной трубки, генератор прямоугольных импульсов ГПрИ, который работает в ждущем режиме и запускается тем же пусковым импульсом, который поступает на импульсный модулятор. Указанный генератор вырабатывает прямоугольный импульс, длительность которого определяет длительность развертки дальности в электронно-лучевой трубке индикатора и всегда меньше периода повторения Т системы. Этот импульс, подается на генератор линейно-изменяющегося напряжения ГЛИН, вырабатывающий импульс напряжения развертки. Под действием этого импульса на двух выходах парафазного (т. е. двухтактного) усилителя ПФУ вырабатываются два линейно-изменяющихся импульса одинаковой амплитуды, но разной полярности. Иначе говоря, на одном выходе вырабатывается импульс линейно-возрастающего .напряжения, а на другом — импульс линейно-падающего напряжения. Первый импульс подается на правую отклонующую пластину трубки, а второй — на ее левую отклоняющую пластину. В результате между указанными пластинами действует линейно- возрастающая во времени разность потенциалов. При этом между ними появляется электростатическое поле, напряженность которого в процессе развертки линейно увеличивается во времени от нулевого значения в начале развертки до максимального в ее конце. При этом средний потенциал отклоняющих пластин при развертке остается постоянным. Под действие^ указанных отклоняющих напряжений электронный луч трубки равномерно и прямолинейно развертывается по ее экрану, вызывая свечение соответствующих точек. Во время развертки положительные импульсы отраженных сигналов после их фильтрации от помех, усиления и детектирования в радиоприемном устройстве РПрУ подаются на верхнюю отклоняющую пластину, вызывая в момент поступления отклонение электронного луча вверх. Несмотря на тщательное экранирование радиопередающего устройства (импульсного модулятора и генератора СВЧ) от радиоприемного устройства, импульс зондирующего сигнала вследствие своей большой импульсной мощности проникает в последнее устройство и из него поступает на вертикально отклоняющую пластину трубки, вызывая на ее экране соответствующий выброс. Таким образом, на экране электронно-лучевой трубки (рис. 2.7) образуется линейная развертка дальности с выбросами зондирующего и отраженных сигналов (и5 на рис. 2.6). Расстояние на экране трубки между передними фронтами (или максимумами) импульсов зондирующего и одного из отраженных сигналов составляет
где h — чувствительность трубки к отклонению луча; и — разность потенциалов отклоняющих пластин; U — амплитуда этой разнос- сти; /р — длительность развертки; v„ — скорость движения пятна по экрану трубки; /р — длина развертки; гр — дальность, соответствующая всей длительности развертки; т — масштаб, в котором отображается расстояние на экране. Следовательно, дальность отражающего объекта r=//m пропорциональна расстоянию между передними фронтами зондирующего и отраженного импульсов. Ошибка измерения дальности Ar=Al/m при заданной погрешности измерения расстояния Л1 на экране трубки тем меньше, чем больше масштаб, т. е. чем больший участок диаметра трубки соответствует заданному диапазону дальности. Для удобства измерения дальности отклонение луча на экране трубки градуируется непосредственно в единицах дальности путем подачи, например, на нижнюю отклоняющую пластину так называемых меток времени, которые представляют собой короткие импульсы, период повторения которых соответствует выбранному интервалу дальности. Эти метки вырабатываются специальным калибратором (он не показан на рис. 2.7), работа которого синхронизируется пусковыми импульсами. Легко видеть, что импульсный радиодальномер обладает разрешающей способностью по дальности и позволяет просто определять дальности многих объектов. По этой и другим причинам он получил исключительно широкое распространение Максимальная энергетическая дальность действия технического средства. Вследствие низкого расположения антенны (извещателя), невысокого роста нарушителей и сложностью формирования достаточно узкой диаграммы направленности радиоволновыми средствами, в отличие от оптико-электронных, сигналы, отраженные от подстилающей поверхности, интерферируют с сигналами, прошедшими по прямой, существенно влияя на максимальную энергетическую дальность действия технического средства. Поэтому, при использовании непрерывного, модулированного или импульсного зондирующего сигнала передатчика максимальная энергетическая дальность, настраиваемая путем регулировки чувствительности приемника или мощности передатчика определяется согласно основному уравнению дальности для радиосвязи с учетом интерференционного множителя, учитывающего отражения от подстилающей поверхности и влияющего на результирующий коэффициент усиления приемной антенны, с учетом того, что передающая и приемная антенны идентичны и расстояние между блоками передачи и приема намного больше высоты нарушителя и высоты установки извещателя:
где: E1– энергия излучения, SA– эффективная площадь апертуры приемной антенны, sэ– эффективная площадь рассеяния объекта, N0– спектральная плотность мощности шума на входе приемника, qmin– минимальное отношение сигнал/шум на входе приемника, l– длина волны излучения, Lп– потери при распространении сигнала, Hи– выстота установки извещателя, Ho– высота нарушителя.
Взаимосвязь тактических характеристик (дальность, максимально возможная дальность, мертвая зона) с техническими параметрами системы (длительность импульса, период повторения импульсов, период модуляции, девиация частоты, центральная частота сигнала).
Длительность импульса определяется как интервал времени от момента появления импульса до момента его исчезновения. Длительность переднего фронта импульса обычно определяют как время, за которое величина тока или напряжения изменяется от 0,1 до 0,9 амплитудного значения, длительность заднего фронта или спада определяют как время, за которое величина тока или напряжения изменяется от 0,9 до 0,1 амплитудного значения. При переходе от периодически повторяющихся импульсов к одиночным линейчатый спектр разложения превращается в сплошной, так как интервал между спектральными линиями, стремится к нулю. Форма огибающей при этом остается неизменной, так как она не зависит от периода повторения импульсов, а определяется их формой.
|