Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Необратимость тепловых процессов. Второй закон термодинамики.




Обратимым называется процесс, который отвечает следующим условиям:

  1. его можно провести в двух противоположных направлениях;
  2. в каждом из этих случаев система и окружающие ее тела проходят через одни и те же промежуточные состояния;
  3. после проведения прямого и обратного процессов система и окружающие ее тела возвращаются к исходному состоянию.

Всякий процесс, не удовлетворяющий хотя бы одному из этих условий, является необратимым.

Так, можно доказать, что абсолютно упругий шарик, падая в вакууме на абсолютно упругую плиту, вернется после отражения в исходную точку, пройдя в обратном направлении все те промежуточные состояния, которые он проходил при падении.

Но в природе нет строго консервативных систем, в любой реальной системе действуют силы трения. Поэтому все реальные процессы в природе необратимы.

Реальные тепловые процессы также необратимы.

Примеры:

  1. При диффузии выравнивание концентраций происходит самопроизвольно. Обратный же процесс сам по себе никогда не пойдет: никогда самопроизвольно смесь газов, например, не разделится на составляющие ее компоненты. Следовательно, диффузия — необратимый процесс.
  2. Теплообмен, как показывает опыт, также является односторонне направленным процессом. В результате теплообмена энергия передается сама по себе всегда от тела с более высокой температурой к телу с более низкой температурой. Обратный процесс передачи теплоты от холодного тела к горячему сам по себе никогда не происходит.
  3. Необратимым является также процесс превращения механической энергии во внутреннюю при неупругом ударе или при трении.

Между тем из первого закона термодинамики направленность и тем самым необратимость тепловых процессов не вытекает. Первый закон термодинамики требует лишь, чтобы количество теплоты, отданное одним телом, в точности равнялось количеству теплоты, которое получит другое. А вот вопрос о том, от какого тела, от горячего к холодному или наоборот, перейдет энергия, остается открытым.

Направленность реальных тепловых процессов определяется вторым законом термодинамики, который был установлен непосредственным обобщением опытных фактов. Это постулат. Немецкий ученый Р. Клаузиус дал такую формулировку второго закона термодинамики: невозможно перевести тепло от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или окружающих телах.

Из второго закона термодинамики вытекает невозможность создания вечного двигателя второго рода, т.е. двигателя, который бы совершал работу за счет охлаждения какого-либо одного тела.

2.Элементарный электрический заряд. Два рода электрических зарядов. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Напряжённость электрического поля. Силовые линии. Суперпозиция электрических полей.

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами q или Q.

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

· Существует два рода электрических зарядов, условно названных положительными и отрицательными.

· Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

· Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда.

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q1 + q2 + q3 + ... +qn = const.

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e.

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела – дискретная величина:

 

В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами.

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

 

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Силы взаимодействия подчиняются третьему закону Ньютона: Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3). Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент k в системе СИ обычно записывают в виде:

где электрическая постоянная.

В системе СИ элементарный заряд e равен:

 

e = 1,602177·10–19 Кл ≈ 1,6·10–19 Кл.

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции.

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ- существует вокруг электрического заряда, материально.
Основное свойство электрического поля: действие с силой на электрический заряд, внесенный в него.
Электростатическое поле- поле неподвижного эл.заряда, не меняется со временем.
Напряженность электрического поля.-силовая характеристика эл. поля.
- это отношение силы, с которой поле действует на внесенный точечный заряд к величине этого заряда.
- не зависит от величины внесенного заряда, а характеризует электрическое поле!

Направление вектора напряженности
совпадает с направлением вектора силы, действующей на положительный заряд, и противоположно направлению силы, действующий на отрицательный заряд.

В любой точке поля напряженность направлена всегда вдоль прямой, соединяющей эту точку и q0.


Поделиться:

Дата добавления: 2015-04-18; просмотров: 252; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты