Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Антитела, иммуноглобулины, их основные свойства. Специфичность антител.




Антитела (иммуноглобулины) - белки плазмы крови, которые об­разуются в организме под влиянием антигенов. Основным свойством антител является специфичность, то есть способность соединяться с тем

антигеном, который вызвал их образование. Специфичность антител обусловлена активными центрами, то есть участками молекулы иммуноглобулина, которые соединяются с детерминантными группами (эпитопами) антигена. Число активных центров называют валентностью антител.

Антитела содержатся в жидкой части крови и в других жидкостях организма. Сыворотку, содержащую антитела, называют иммунной, в отличие от нормальной, не содержащей специфических антител.

Химическая природа антител.Это гликопротеиды. Состоят из двух тяжелых полипептидных цепей - Н-цепей (англ, heavy - тяжелый) и двух легких цепей - L-цепей (англ, light - легкий). Цепи связаны дисульфидными мостиками. Как в легких, так и в тяжелых цепях имеется вариабельная V-обдасть с непостоянной последовательностью амино­кислот, и константная С-область. Аминокислоты в полипептидных це­пях направлены таким образом, что их NН2-концевые группы распо­ложены в вариабельной части, а СООН-концевые группы - в констант­ной.

При обработке протеолитическим ферментом папаином молекула иммуноглобулина распадается на Fab-фрагменты (англ, fragment an­tigen binding - фрагмент, связывающий антиген) и Fc-фрагмент (англ. fragment cristalline - кристаллизующийся фрагмент). В состав Fab-фрагмента входит целиком легкая цепь и часть тяжелой цепи, концевые их части составляют активный центр. В состав Fc-фрагмента входят остатки двух тяжелых цепей.

Активный центр молекулы иммуноглобулина по конфигурации со­ответствует конфигурации детерминантной группе антигена. Он очень мал, занимает лишь 2% поверхности антитела. Описанная мономерная молекула иммуноглобулина имеет два активных центра, то есть может связать две молекулы антигена.

Будучи белками, антитела (иммуноглобулины) обладают анти­генной, видовой специфичностью. Детерминантная группа, определя­ющая специфичность, расположена в области Fc-фрагмента. Наличие антигенной специфичности иммуноглобулинов имеет практическое зна­чение, так как позволяет обнаружить их с помощью антиглобулиновых сывороток.

Различают пять классов иммуноглобулинов, которые обозначаются IgG, IgM, IgA, IgD, IgE и отличаются между собой по физико-химичес­ким свойствам и биологическим функциям (рис. 17).

Иммуноглобулины класса G (Ig G)являются мономерами, то есть состоят из двух легких и двух тяжелых цепей, молекулярная масса 160 кД, константа седиментации (скорость осаждения в центрифу­ге) 7S. Составляют основную массу сывороточных иммуноглобули­нов (70-80%). Единственные из всех классов проникают через пла­центу и играют важную роль в защите новорожденного от инфек­ции.

Иммуноглобу­лины класса М (Ig М) первыми появ­ляются после введе­ния антигена. Мо­лекула IgM состоит из 5 субъединиц, то есть является пентамером. Молеку­лярная масса 300 кД, константа се­диментации 19S. Содержание в сыворотке крови 5-10%.

Иммуноглобулины класса A (Ig А) синтезируются в селезенке, лимфоузлах и подслизистом слое дыхательных путей и кишечного тракта. По физико-химическим свойствам неодинаковы и могут иметь константы седиментации 7,9,11 и 18S. Часть IgA попадает в кровь - это сывороточные IgA. Большая же часть IgA - это секреторные SIgA, у которых два или три мономера соединены между собой сек­реторным фрагментом, защищающим иммуноглобулин от разруше­ния ферментами. Секреторные SIgA проникают на поверхность сли­зистых оболочек, содержатся в секретах и играют важную роль в защите организма от проникновения возбудителей, например, ви­русов гриппа, полиомиелита.

Иммуноглобулины класса D (Ig D)-молекулярная масса 180 кД, константа седиментации 7S. Содержание в сыворотке крови около 0,2%. Роль IgD пока неизвестна

Иммуноглобулины класса Е (Ig E)-молекулярная масса 200 кД, кон­станта седиментации 8S, содержатся в нормальной сыворотке крови в небольших количествах (0,002%). Их называют также реагинами, по­скольку они способны присоединяться к клеткам (цитофильны) и при­нимают участие в реакции анафилаксии

Форма и размеры иммуноглобулинов G и Мбыли изучены в элект­ронном микроскопе. IgG имеют форму вытянутых эллипсов с тупыми концами, a IgM - форму паучка с пятью ножками.

67. Местный иммунитет: определение понятия, основные механизмы; особенности структуры секреторных иммуноглобулинов, месте их образования и функции.

Местный иммунитет - это особый вид защиты против внедрения в организм возбудителей инфекций, главным образом кишечных и воз­душно-капельных. Большую роль здесь играют неспецифические фак­торы и антитела, так называемые секреторные иммуноглобулины клас­са A (SIgA). Иммуноглобулины IgA - белки, представляющие класс антител А, обеспечивающих местный иммунитет. Иммуноглобулины класса A (Ig А) синтезируются в селезенке, лимфоузлах и подслизистом слое дыхательных путей и кишечного тракта. По физико-химическим свойствам неодинаковы и могут иметь константы седиментации 7,9,11 и 18S. Часть IgA попадает в кровь - это сывороточные IgA. Большая же часть IgA - это секреторные SIgA, у которых два или три мономера соединены между собой сек­реторным фрагментом, защищающим иммуноглобулин от разруше­ния ферментами. Секреторные S IgA проникают на поверхность сли­зистых оболочек, содержатся в секретах и играют важную роль в защите организма от проникновения возбудителей, например, ви­русов гриппа, полиомиелита.

Инфекционная иммунология, определение понятия. Особенности антибактериального, противовирусного иммунитета. Роль системы главного комплекса гистосовместимости (HLA) в формировании инфекционного иммунитета.

Впервые Эдуард Дженнер провел вакцинацию против оспы путем заражения человека оспой коров. Пастер создал вакцины против бе­шенства и сибирской язвы и научно обосновал принципы получения живых вакцин. Мечников построил фагоцитарную теорию иммуните­та. Бухнер обнаружил бактерицидные свойства сыворотки крови. Эрлихом была предложена гуморальная теория иммунитета. Беринг и Ру создали лечебные антитоксические сыворотки против дифтерии и столбняка. Это направление иммунологии ("инфекционная иммуно­логия") развивалась в дальнейшем и продолжает развиваться. Достиг­нуты значительные успехи в профилактике, лечении и диагностике инфекционных заболеваний.

HLA-система представляет собой комплекс генов, выполняющих различные биологические функции, и в первую очередь обеспечивающих генетический контроль иммунного ответа и взаимодействие между собой клеток, которые реализуют этот ответ.

Антибактериальный иммунитет, который может быть стерильным и нестерильным. При стерильном иммунитете микроорганизмы из организма удаляются, а иммунитет сохраняется. При нестерильном иммунитете для поддержания иммунитета необходимо присутствие в организме небольшого количества микроорганизмов (иммунитет к туберкулезу);

Противовирусныйиммунитет обеспечивает нейтрализа­цию вирионов или подавление их образования.

Характер иммунитета при вирусных инфекциях связан с особен­ностями вирусов как строгих внутриклеточных паразитов.

Неспецифическая противовирусная резистентность обусловлена

такими механизмами, как:

1) отсутствие в организме чувствительных клеток к данному вирусу;

2) наличие неспецифических вирусных ингибиторов;

3) повышенная температура тела;

4) интерферон - один из основных противовирусных факторов за­щиты.

Фагоцитоз в отношении вирусов имеет меньшее значение, чем в отношении бактерий и часто бывает незавершенным.

Специфические противовирусные антитела могут нейтрализо­вать внеклеточные формы - вирионы, препятствуя их проникнове­нию в клетки организма. Против внутриклеточных форм вирусов антитела неэффективны. Существенную роль играют секреторные SIgA, создающие местный иммунитет в воротах инфекции, напри­мер, при гриппе. Сывороточные антитела, циркулирующие в кровя­ном русле, играют защитную роль при вирусемии.

В противовирусном иммунитете действует особый механизм. Клет­ки, зараженные вирусом, имеют на своей поверхности антигенные де­терминанты. Поэтому они становятся мишенями для цитотоксических лимфоцитов - Т-киллеров. При этом зараженные клетки погибают вме­сте с вирусом. Например, при вирусном гепатите В происходит гибель гепатоцитов, зараженных вирусом.

Роль системы главного комплекса гистосовместимости (HLA) в формировании инфекционного иммунитета:

В плазматических мембранах клеток разных тканей содер­жатся антигены главного комплекса гистосовместимости, которые играют важнейшую роль в иммунном ответе, иммунорегуляции, реакции отторжения трансплантата и других процессах. Их часто бозначают НLА (англ. Human leucocyte antigenes) в связи тем, что для клинических и экспериментальных целей в качестве антигенов главного комплекса гистосовместимости определяют лейкоцитарные антигены.

По своей химической природе эти антигены относятся к гликопротеинам клеточных мембран. По химической структуре и функциональному назначению НLА подразделяют на два класса. НLА класса I состоят из двух полипептидных цепей с разной молекулярной массой: тяжелая α-цепь (молекулярная масса 44 000) нековалентно связана с легкой β-цепъю (молекулярная масса 11600). Данные антигены содержатся в мембране почти всех ядросодержащих клеток. Они играют роль трансплантационных анти­генов, варьирующих от человека к человеку и обеспечивающих реакцию отторжения трансплантата. Основная биологическая роль их состоит в том, что НLА-антигены класса I являются маркерами «своего», не подлежащего «атаке» Т-киллеров. При заражении клеток вирусами НLА-антигены класса I в комплексе с вирусными антигенами становятся своеобраз­ными ориентирами для избирательного уничтожения заражен­ных клеток Т-киллерами.

НLА-антигены, принадлежащие к классу II, состоят из двух микроглобулиновых цепей примерно одной и той же молекуляр­ной массы (34 000 и 28000 соответственно), прикрепленных к поверхностной мембране макрофагов, Т- и В-лимфоцитов. Эти антигены участвуют в иммунорегуляции, служат для распозна­вания антигенных эпитопов Т-хелперами на мембране макрофагов и других клеток.

Генетический контроль НЬА осуществляется генами, располо­женными на хромосоме 6 в трех сублокусах: НЬА-А, НЬА-В, НЬА-С.

Один человек не может иметь более 2 разных трансплантационных антигенов в одном сублокусе, т. е. не более 6 антигенов в трех сублокусах. НLА-сублокус находится в I-области хромо­сомы и содержит Ir-гены (англ. immune—иммунный ответ), контролирующие образование 1а- или НLА-DR-антигенов, принадлежащих к классу П.

69. Противовирусный иммунитет: неспецифические факторы защиты, роль фагоцитоза и антител. Интерферон: условия образования, виды, механизмы противовирусного действия; индукторы интерферона, практическое применение.

Характер иммунитета при вирусных инфекциях связан с особен­ностями вирусов как строгих внутриклеточных паразитов.

Неспецифическая противовирусная резистентность обусловлена такими механизмами, как:

1) отсутствие в организме чувствительных клеток к данному вирусу;

2) наличие неспецифических вирусных ингибиторов;

3) повышенная температура тела;

4) интерферон - один из основных противовирусных факторов за­щиты.

Фагоцитоз в отношении вирусов имеет меньшее значение, чем в отношении бактерий и часто бывает незавершенным.

Специфические противовирусные антитела могут нейтрализо­вать внеклеточные формы - вирионы, препятствуя их проникнове­нию в клетки организма. Против внутриклеточных форм вирусов антитела неэффективны. Существенную роль играют секреторные SIgA, создающие местный иммунитет в воротах инфекции, напри­мер, при гриппе. Сывороточные антитела, циркулирующие в кровя­ном русле, играют защитную роль при вирусемии.

В противовирусном иммунитете действует особый механизм. Клет­ки, зараженные вирусом, имеют на своей поверхности антигенные де­терминанты. Поэтому они становятся мишенями для цитотоксических лимфоцитов - Т-киллеров. При этом зараженные клетки погибают вме­сте с вирусом. Например, при вирусном гепатите В происходит гибель гепатоцитов, зараженных вирусом.

Противовирусный природный антибиотик животного происхожде­ния - интерферон. Это низкомолекулярный белок, образуется в клет­ках организма или в культуре клеток под действием индукторов инерферона и является одним из факторов неспецифнческой противо­вирусной защиты. Индукторами могут быть не только вирусы, но и бактерии, ЛПС бактерий, некоторые лекарственные средства. В нача­ле изучения интерферона было открыто его противовирусное действие, в дальнейшем было обнаружено несколько типов интерферонов и мно­гообразное их действие: противовирусное, противоопухолевое, иммуномодулирующее, радиопротекторное. Интерферон неспецифичен в от­ношении вида вируса, но обладает видовой специфичностью. Поэто­му для лечения человека эффективен интерферон, выделяемый культурой человеческих клеток. Интерферон не оказывает непосредственно­го действия на вирус, но подавляет синтез вирусных белков в клетке и таким образом препятствует образованию вирионов. Известно несколь­ко типов интерферона, из которых в качестве противовирусного сред­ства применяется лейкоцитарный а-интерферон.

С помощью методов генетической инженерии получен рекомбинантный интерферон - реаферон.

70. Механизмы соединения антитела с антигеном и реакции иммунитета. Виды антител. Моноклональные антитела: принципиальная схема получения, преимущество и практическое применение.

Динамика образования антител . Синтез антител протекает в две фазы. Первая - индуктивная, которая длится 3-5 суток от момен­та введения антигена до появления антител в крови. Вторая - продук­тивная, когда антитела появляются в крови, количество их нарастает к 15-30 суткам и затем снижается. Иммунный ответ после первого вве­дения антигена называют первичным. Особенностью его является то, что первоначально синтезируются IgM, затем IgG.

Вторичный иммунный ответ развивается при повторном введе­нии того же антигена и отличается от первичного следующими особенностями, индуктивная фаза короче (1-2 суток), уровень анти­тел нарастает быстрее, достигает более высоких значений и сохраняется дольше, медленно снижаясь в течение нескольких лет При вторичном иммунном ответе с самого начала образуются IgG. Более быстрая и сильная выработка антител при вторичном иммун­ном ответе объясняется тем, что после первичного введения в орга­низме остаются "клетки памяти", которые при вторичном введении того же антигена быстро размножаются и интенсивно включают про­цесс образования антител.

В практической медицине учитываются особенности динамики антителообразования:

1) при составлении рациональных графиков вакцинации с опреде­ленными интервалами;

2) при экстренной профилактике столбняка людям, получившим травму, если они были ранее привиты столбнячным анатоксином, вво­дят не антитоксическую сыворотку, которая может дать нежелатель­ные аллергические реакции, а анатоксин, - в расчете на быстрый и сильный иммунный ответ;

3) при серологической диагностике дифференцируют первичное заболевание сыпным тифом от рецидива (болезни Брилля) по наличию в крови больного IgM.

Виды антител. Принято различать полные и неполные антитела. Полные антитела имеют не менее двух активных центров, поэтому при постановке реакции агглютинации, преципитации и других реакций иммунитета они обусловливают видимый эффект. Неполные антитела способны соединяться с антигеном, но видимой реакции агглютина­ции или преципитации не наблюдается. Причина в том, что неполные антитела имеют только один активный центр, способный соединяться с антигеном (второй блокирован). Неполными являются антитела к резус-антигену эритроцитов. При многих инфекциях они появляются

наряду с полными антителами. Для выявления неполных антител ис­пользуют реакцию Кумбса.

По характеру действия антитела разделяют на антимикробные, антитоксические, вируснейтрализующие, гемолизины, аутоантитела и др. Антимикробные антитела вызывают агглютинацию бактерий или преципитацию антигенов, извлеченных из них, лизис бактерий при уча­стии комплемента, усиление фагоцитоза - опсонизацию; антитоксины нейтрализуют токсины; вируснейтрализующие антитела оказывают противовирусное действие. Аутоантитела вырабатываются орга­низмом против собственных белков и клеток при изменении их хими­ческой структуры или при освобождении антигенов из разрушивших­ся органов и тканей, или при утрате естественной нммунологической толерантности к каким-то собственным антигенам.

Моноклональные антитела. При введении антигена в иммунный от­вет вовлекается множество лимфоцитов. Они могут различаться между собой по специфичности, различия эти могут быть совсем незначитель­ными. Однако при иммунизации даже таким антигеном, который со­держит одну детерминантную группу, образуются антитела, различа­ющиеся по своей специфичности.

Для получения антител одной специфичности необходимо полу­чить потомство-клон (греч. klon - отпрыск, ветвь) из одного лимфоцита. Но культуру лимфоцитов в искусственной питательной среде получить трудно (вследствие ограниченного числа делений и времени жизни клетки). Только опухолевые клетки могут культивироваться in vitro без ограничения при условии поступления питательных веществ .

Задачу получения культуры клеток, полученных из одного лимфоцита и способных длительно размножаться в питательной сре­де, решили Г.Келер и К. Мильштейн (1975 г., Нобелевская премия, 1984 г.). Авторы разработали методику получения гибридом (гиб­ридных клеток) от слияния лимфоцитов иммунизированных живот­ных с миеломными (опухолевыми) клетками. Слияние осуществляет­ся с помощью полиэтиленгликоля или электрического разряда. По­лученные гибридомы наследуют от лимфоцита способность синте­зировать специфическое антитело, а от миеломной клетки спо­собность бесконечно размножаться в питательной среде in vitro. Син­тезируемые гибридомами антитела могут быть получены в неогра­ниченном количестве. Антитела идентичны и по специфичности, и по классу иммуноглобулинов. Таким образом, полученный in vitro препарат может служить идеальным по специфичности средством для диагностики и лечения (рис. 19).

Основные группы серологических реакций. Характеристика реакций для прямого определения антител и антигенов, реакции пассивной агглютинации, методов с применением меченых антител и антигенов.

Реакция непрямой или пассивной гемагглютинации (РНГА или РПГА) более чувствительна и специфична, чем реакция агглютинации. Эту реакцию также используют в двух направлениях.

1) Для обнаружения антител в сыворотке крови больного приме­няются эритроцитарные диагностикумы, в которых антиген адсорби­рован на поверхности обработанных танином эритроцитов. В отноше­нии этой реакции чаще употребляют термин РПГА.

Исследуемую сыворотку разводят в лунках пластмассовых план­шетов и добавляют эритроцитарный диагностикум. При положитель­ной реакции появляется тонкая пленка по стенкам лунки в виде "кру­жевного зонтика», при отрицательной реакции - плотный осадок эрит­роцитов в виде "пуговки".

2) Для обнаружения токсинов и бактериальных антигенов в исс­ледуемом материале применяют антительные эритроцитарные диагнос­тикумы, полученные путем адсорбции антител на эритроцитах. В от­ношении этой реакции чаще употребляется термин РНГА. Например, с помощью антительных диагностикумов обнаруживают антиген па­лочки чумы, дифтерийный экзотоксин, ботулинический экзотоксин.

Реакции с участием меченых антигенов или антител основаны на использовании меченых иммунореагентов. Помечены могут быть антигены, антитела или антиглобулиновая сы­воротка. В качестве метки используют флюоресцентные красители (РИФ), ферменты (ИФА), радиоизотопы (РИА), электронноплотные со­единения (ИЭМ).

Реакция иммунофлюоресценции (РИФ), реакция Кунса. Это метод экспресс-диагностики. Для постановки РИФ применяются иммунные сыворотки, меченные флюорохромными красителями, например, изоти-оцианатом флюоресцеина. Флюорохромы вступают в химическую связь с сывороточными белками, не нарушая их специфичности.

Прямой метод РИФ. Из исследуемого материала, в котором предполагается наличие антигена (например, холерного вибриона), гото­вят препарат-мазок и обрабатывают его флюоресцирующей сыворот­кой, содержащей антитела к данному антигену (в нашем случае - про­тивохолерной сывороткой). При микроскопии в люминесцентном мик­роскопе наблюдают светящиеся микробы.

Недостатком прямого метода РИФ является необходимость иметь боль­шой набор флюоресцирующих сывороток против каждого антигена.

Непрямой метод РИФ. Препарат-мазок обрабатывают иммунной кроличьей антисывороткой к антигену (противохолерной кроличьей сывороткой), а затем - флюоресцирующей антиглобулиновой сыворот­кой, содержащей антитела против глобулинов кролика. Затем наблю­дают в люминесцентном микроскопе светящиеся микробы.

При использовании этого метода можно иметь одну флюоресци­рующую сыворотку против глобулинов кролика.

Иммуноферментный анализ (ИФА). Как и другие реакции иммуни­тета, ИФА используется 1) для определения неизвестного антигена с помощью известных антител или 2) для выявления антител в сыворот­ке крови больного с помощью известного антигена. Особенность реак­ции в том, что известный ингредиент реакции соединен с ферментом, и его присутствие определяется с помощью субстрата, который при дей­ствии фермента окрашивается.

Наиболее широко применяется твердофазный ИФА.

1) Обнаружение ан­тигена (рис. 20). Первый этап - адсорбция специ­фических антител на твердой фазе, в качестве которой используют по­листироловые или поливинилхлоридные поверхности лунок пла­стиковых панелей.

Второй этап - добав­ление исследуемого ма­териала, в котором пред­полагается наличие ан­тигена. Антиген связы­вается с антителами. После этого луночки промывают.

Третий этап - добав­ление специфической сы­воротки, содержащей антитела против данно­го антигена, меченые ферментом. В качестве

фермента используют пероксидазу или щелочную фосфатазу. Мече­ные антитела присоединяются к антигенам, а их избыток удаляется промыванием. Таким образом, в случае присутствия в исследуемом ма­териале антигена на поверхности твердой фазы образуется комплекс антитело-антнген-антитела, меченные ферментом. Для обнаружения фермента добавляют субстрат. Для пероксидазы субстратом служит ортофенилдиамин в смеси с Н2О2 в буферном растворе. При действии фермента образуются продукты, имеющие коричневую окраску, ин­тенсивность которой позволяет количественно определить результаты опыта фотометрированием.

2) Обнаружение антител. Первый этап - адсорбция специ­фических антигенов на стенках лунки. Обычно в коммерческих систе­мах антигены уже адсорбированы на поверхности твердой фазы - в лунках или на пластиковых шариках.

Второй этап - добавление исследуемой сыворотки. При наличии антител образуется комплекс антиген-антитела.

Третий этап - после отмывания лунок добавляют антиглобулиновые антитела (антитела против глобулинов человека), меченные ферментом.

Результаты реакции учитывают, как указано выше.

В качестве контролей используют образцы заведомо положи­тельные и заведомо отрицательные.

Разрабатываются "безреагентные" системы для ИФА, в которых все компоненты реакции со­единены с поверхностью полимера. Для проведе­ния анализа необходимо внести исследуемый мате­риал и наблюдать измене­ние окраски.

ИФА применяется при многих инфекционных заболеваниях, в час­тности, при ВИЧ-инфекции, при вирусных гепати­тах.

Иммуноблоттинг - это вариант ИФА, сочетание электрофореза и ИФА.

Реакция нейтрализации токсина антитоксином; механизмы и ингредиенты (получение токсина и антитоксической сыворотки, единицы измерения). Применение для определения уровня антитоксического иммунитета (название реакции, постановка), применение с диагностической целью (на примере диагностики ботулизма или столбняка).

В этой реакции антигеном является экзотоксин, антителами - анти­токсины. При их взаимодействии происходит нейтрализация токсина. Реакцию ставят в пробирках для определения силы антитоксической сыворотки. Внешнее проявление реакции - флоккуляция (помутнение). Для обнаружения токсина с диагностической целью при ботулизме, столбняке, газовой анаэробной инфекции ставят реакцию нейтрали­зации токсина антитоксином в биологическом опыте на животных.

Реакции нейтрализации (РН) основаны на способности AT связывать различные возбудители и их метаболиты, лишая тем самым их возможности реализовать свои биологические свойства (ины­ми словами, AT нейтрализуют возбудителей). На практике РН применяют для выявления вирусов и различных токсинов. В определённой степени к ним же относят реакции торможения вирусиндуцированной гемагглютинации и иммобилизации.

РН вирусов. В сыворотке крови переболевших лиц циркулируют AT, нейтрализующие вирусы. Их наличие выявляют смешиванием культуры возбудителя с сывороткой с последующим введением лабораторному животному или заражением культуры клеток. На эффективность нейтрализации указывает выживание животного либо отсутствие гибели клеток в культурах.

РН токсинов применяется для идентификации бактериальных экзотоксинов по видовой и типовой их принадлежности, а также для определения содержания антитоксинов в исследуемой сыворотке. Принцип основан на способности антитоксинов связывать токсин и блокировать его действие. Для идентификации токсина и определения титра антитоксических АТ их смесь вводят лабораторным животным. При соответствии типа токсина и антисывороткии гибели животных не наблюдают. Нейтрализацию токсинов in vitro определяют в реакции флоккуляции. Для определения антитоксического иммунитета у человека часто применяют кожные пробы (например, пробу Шика).


Поделиться:

Дата добавления: 2015-04-18; просмотров: 276; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты