Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Уравнение Бернулли для потока идеальной жидкости.




Поток идеальной жидкости, как указывалось ранее, можно представить совокупностью элементарных струек жидкости. Скорости по сечению потока неодинаковы, причём в середине потока скорости наибольшие, а к периферии они уменьшаются (струйная модель потока). Это означает, что различные струйки в одном сечении имеют различные значения кинетической энергии. Отсюда следует, что кинетическая энергия, посчитанная с использованием скоростей элементарных струек uS, и кинетическая энергия, посчитанная с использованием значения средней скорости потока V, будет иметь разные значения. Выясним, какова эта разница. Кинетическая энергия элементарной струйки равна:

где - масса жидкости плотностью , протекающей через живое сечение элементарной струйки со скоростью за время dt, равная:

.

Проинтегрировав выражение для , получим выражение для кинетической энергии потока идеальной жидкости .

 

.

Если принять, что t=1, получим:

.

Последняя формула определяет энергию потока с использованием скоростей элементарных струек .

Если получить значение кинетической энергии потока с использованием значения средней скорости потока V , получим формулу:

,

где - масса жидкости плотностью , протекающей через живое сечение потока со скоростью за время t, равная:

.

После подстановки при t=1 окончательно получим:

.

Отношение и , равное:

.

Полученная величина ±носит наименование коэффициента кинетической энергии иликоэффициента Кориолиса. Смысл этого коэффициента заключается в отношении действительной кинетической энергии потока в определённом сечении к кинетической энергии в том же сечении потока, но при равномерном распределении скоростей. При равномерном распределении скоростей его значение равно единице, а при неравномерном – всегда больше единицы и для любого потока его значение находится в пределах от 1 до 2 и более.

Учитывая коэффициент кинетической энергии, приведём уравнение Бернулли для потока идеальной жидкости, которое примет вид:

Надо учесть, что в общем случае в разных сечениях потока коэффициент ± будет иметь различные значения.

 


Поделиться:

Дата добавления: 2015-04-18; просмотров: 115; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты