Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Теоретические упражнения




1. Пусть — решение дифференциального уравнения . Показать, что введение новой искомой функции приводит к дифференциальному уравнению, допускающему понижение порядка.

2. Написать уравнение линии, на которой могут находиться точки перегиба графиков решений уравнения .

3. Написать уравнение линии, на которой могут находиться точки графиков решений уравнения , соответствующие максимумам и минимумам. Как отличить максимум от минимума?

4. Линейное дифференциальное уравнение останется линейным при замене независимой переменной , где функция произвольная, но дифференцируемая достаточное число раз: Доказать это утверждение для линейного дифференциального уравнения второго порядка.

5. Доказать, что линейное дифференциальное уравнение остается линейный при преобразовании искомой функции

.

Здесь — новая искомая функция, и — произвольные, но достаточное число раз дифференцируемые функции.

6. Составить общее .решение уравнения , если известно ненулевое частное решение этого уравнения.

7. Показать, что произвольные дважды дифференцируемые функции и являются решениями линейного дифференциального уравнения.

8. Составить однородное линейное дифференциальное уравнение второго порядка, имеющее решения , .

Показать, что функции и линейно -независимы в интервале .

Убедиться в том, что определитель Вронского для этих функций равен нулю в точке . Почему это не противоречит необходимому условию линейной независимости системы решений линейного однородного дифференциального уравнения?

9. Найти общее решение неоднородного линейного дифференциального уравнения второго порядка, если известны три линейно-независимые частные его решения , и .

10. Доказать, что для того чтобы любое решение линейного однородного дифференциального уравнения с постоянными коэффициентами удовлетворяло условию , необходимо и достаточно, чтобы все корни характеристического уравнения имели отрицательные действительные части.


Поделиться:

Дата добавления: 2015-05-08; просмотров: 85; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты