Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Методы и технические средства измерения температуры




ИЗМЕРЕНИЯ НЕЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН.

Методы и технические средства измерения температуры

Температуру измеряют с помощью устройств, использующих различные термометрические свойства жидкостей, газов и твердых тел. Существуют десятки различных устройств, применяемых в промышленности, при научных исследованиях, для специальных целей.

Температура не может быть измерена непосредственно. Об её изменении судят по изменению других физических свойств тел (объёма, давления, электрического сопротивления, эдс, интенсивности излучения и др.), связанных с температурой определёнными закономерностями. Поэтому методы измерения температуры являются по существу методами измерения указанных выше термометрических свойств, которые должны однозначно зависеть от температуры и измеряться достаточно просто и точно. При разработке конкретного метода или прибора необходимо выбрать термометрическое вещество, у которого соответствующее свойство хорошо воспроизводится и достаточно сильно изменяется с температурой.

Для измерения температуры (при любом методе) необходимо определить температурную шкалу.

Методы измерения температуры разнообразны; они зависят от принципов действия используемых приборов, диапазонов измеряемых температур, условий измерений и требуемой точности. Их можно разделить на две основные группы: контактные методы — собственно термометрия, и бесконтактные методы — термометрия излучения, или пирометрия.

Общим и существенным для всех контактных методов измерения температуры является то, что всякий прибор, измеряющий температуру среды, должен находиться с ней в тепловом равновесии, то есть иметь одинаковую со средой температуру.

Основными узлами всех приборов для измерения температуры являются: чувствительный элемент, где реализуется термометрическое свойство, и связанный с ним измерительный прибор, который измеряет численные значения этого свойства.

В газовой термометрии термометрическим свойством является температурная зависимость давления газа (при постоянном объёме) или объёма газа (при постоянном давлении), соответственно различают — газовый термометр постоянного объёма и газовый термометр постоянного давления. Термометрическое вещество в этих термометрах — газ, приближающийся по своим свойствам к идеальному. Уравнение состояния идеального газа pV = RT устанавливает связь абсолютной температуры Т с давлением р (при постоянном объёме V) или Т с объёмом V (при постоянном давлении). Газовым термометром измеряют термодинамическую температуру. Точность прибора зависит от степени приближения используемого газа (азот, гелий) к идеальному.

В конденсационных термометрах термометрическим свойством является температурная зависимость давления насыщенных паров жидкости. Чувствительный элемент — резервуар с жидкостью и находящимися с ней в равновесии насыщенными парами — соединён капилляром с манометром. Термометрические вещества — обычно низкокипящие газы: кислород, аргон, неон, водород, гелий. Для вычисления температуры по измеренному давлению пользуются эмпирическими соотношениями. Диапазон применения конденсационного термометра ограничен. Высокоточные термометры (до 0,001 град) служат для реализации реперных точек.

В термометрах жидкостных термометрическим свойством является тепловое расширение жидкостей, термометрическим веществом — главным образом ртуть. При определении температуры не производят измерений объёма жидкости; для этого при изготовлении калибруют капилляр термометра в °С, то есть по его длине наносят отметки с интервалами, соответствующими изменению объёма при заданном изменении температуры. Точность термометра зависит от точности калибровки.

В термометрах манометрических, которые являются приборами технического применения, используются те же термометрические свойства, что и в жидкостных или газовых термометрах.

В термометрах сопротивления термометрическим свойством является температурная зависимость электрического сопротивления чистых металлов, сплавов, полупроводников; термометрического вещества выбираются в зависимости от области температурных измерений и требуемой точности. Для определения температуры по измеренному электрическому сопротивлению пользуются эмпирическими формулами или таблицами. Термометры для точных измерений (платина, легированный германий) градуируются индивидуально.

В термометрах термоэлектрических с термопарой в качестве чувствительного элемента термометрическим свойством является термо-эдс термопары; термометрические вещества разнообразны и выбираются в зависимости от области применения и требуемой точности. Для определения температуры по измеренной эдс также пользуются эмпирическими формулами или таблицами. В связи со спецификой термоэлектрического термометра (дифференциального прибора) его точность зависит от точности поддержания и измерения температуры одного из спаев термопары («реперного» спая).

Измерительные приборы, которыми определяют численные значения термометрических свойств (манометры, потенциометры, логометры, мосты измерительные,милливольтметры и т. д.), называются вторичными приборами. Точность измерения температуры зависит от точности вторичных приборов. Термометры технического применения обычно индивидуально не градуируются и комплектуются соответствующими вторичными приборами, шкала которых нанесена непосредственно в °С.

В диапазоне криогенных (ниже 90 К) и сверхнизких (ниже 1 К) температур, кроме обычных методов измерения температур, применяются специфические. Это — магнитная термометрия (диапазон 0,006—30 К; точность до 0,001 град); методы, основанные на температурной зависимости эффекта Мёссбауэра и анизотропии g-излучения (ниже 1 К), термошумовой термометр с преобразователем на эффекте Джозефсона (ниже 1 К). Особой сложностью термометрии в диапазоне сверхнизких температур является осуществление теплового контакта между термометром и средой.

Для обеспечения единства и точности температурных измерений служит Государственный эталон единицы температуры — кельвин,что позволяет в диапазоне 1,5—2800 К воспроизводить Международную практическую температурную шкалу (МПТШ) с наивысшей достижимой в настоящее время точностью. Путём сравнения с эталоном значения температур передаются образцовым приборам, по которым градуируются и проверяются рабочие приборы для измерения температуры. Образцовыми приборами являются германиевые (1,5— 13,8 К) и платиновые [13,8—903,9 К (630,7 °С)] термометры сопротивления, платинородий (90% Pt, 10% Rd) — платиновая термопара (630,7—1064,4 °С) и оптический пирометр (выше 1064,4 °С).

В таблице 5.1 приведены наиболее распространенные устройства для измерения температуры и практические пределы их применения

 

Таблица 5.1

Термометрическое свойство Наименование устройства Пределы длительного применения, °С
Нижний Верхний
Тепловое расширение Жидкостные стеклянные термометры -190
Изменение давления Манометрические термометры -160
Изменение электрического сопротивления Электрические термометры сопротивления. -200
  Полупроводниковые термометры сопротивления -90
Термоэлектрические эффекты Термоэлектрические термометры (термопары) стандартизованные -50
  Термоэлектрические термометры (термопары) специальные
Тепловое излучение Оптические пирометры
  Радиационные пирометры
  Фотоэлектрические пирометры
  Цветовые пирометры

 

 


Поделиться:

Дата добавления: 2015-05-08; просмотров: 318; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты