Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Ключевые кадры




Читайте также:
  1. Государственное регулировании кризисных ситуаций: ключевые подходы, аспекты совершенствования
  2. ДАТЬ КАДРЫ ВСЕМ УЧАСТКАМ СОЦСТРОИТЕЛЬСТВА
  3. ЗАДАЧИ НАШЕЙ СОВЕТСКОЙ ШКОЛЫ И КАДРЫ ЕЕ СТРОИТЕЛЕЙ
  4. ІV. Знания и профессиональные навыки – ключевые ориентиры современной системы образования, подготовки и переподготовки кадров
  5. Кадровая политика определяет функции и задачи воздействия на кадры как объект управления.
  6. Кадры организаций в сфере СКСиТ.
  7. Кадры предприятия, их структура; управление кадрами
  8. Кадры предприятия, показатели использования трудовых ресурсов
  9. Кадры предприятия.
  10. Кадры предприятия. Кадровая политика. Показатели динамики и состава персонала. Производительность труда.

Рис. 15.7. Построение видеоряда по ключевым кадрам

 

Эти условия определяются иерархией объектов (то есть законами их взаимодействия между собой), разрешенными плоскостями движения, предельными углами поворотов, величинами ускорений и скоростей. Такой подход называют методом инверсной кинематики движения. Он хорошо работает при моделировании механических устройств. В случае с имитацией живых объектов используют так называемые скелетные модели. То есть, создается некий каркас, подвижный в точках, характерных для моделируемого объекта. Движения точек просчитываются предыдущим методом. Затем на каркас накладывается оболочка, состоящая из смоделированных поверхностей, для которых каркас является набором контрольных точек, то есть создается каркасная модель. Каркасная модель визуализуется наложением поверхностных текстур с учетом условий освещения. В ходе перемещения объекта получается весьма правдоподобная имитация движений живых существ.

Наиболее совершенный метод анимации заключается в фиксации реальных движений физического объекта. Например, на человеке закрепляют в контрольных точках яркие источники света и снимают заданное движение на видео- или кинопленку. Затем координаты точек по кадрам переводят с пленки в компьютер и присваивают соответствующим опорным точкам каркасной модели. В результате движения имитируемого объекта практически неотличимы от живого прототипа.

Процесс расчета реалистичных изображений назиъают рендерингом (визуализацией). Большинство современных программ рендеринга основаны на методе обратной трассировки лучей (Backway Ray Tracing). Его суть заключается в следующем.

1.Из точки наблюдения сцены посылается в пространство виртуальный луч, по
траектории которого должно прийти изображение в точку наблюдения.

2.Для определения параметров приходящего луча все объекты сцены проверяются
на пересечение с траекторией наблюдения. Если пересечения не происходит,
считается, что луч попал в фон сцены и приходящая информация определяется
только параметрами фона. Если траектория пересекается с объектом, то в точке соприкосновения рассчитывается свет, уходящий в точку наблюдения в соответствии с параметрами материала.

3.Сначала просчитывается преломленный и отраженный свет, затем проверяется видимость из точки пересечения всех источников света и интенсивность светового потока. Также вычисляются наличие, резкость и ширина бликов от каждого источника света.



4.Полученные в результате итоговые значения цвета и интенсивности обрабатываются с учетом траектории луча и параметров атмосферы, и присваиваются точке объекта как значения визуализации для наблюдателя. Затем процесс повторяется для всех элементов сцены. С целью упрощения расчетов пересечение проверяют не для каждой точки, а для примитива в целом. Иногда вокруг объекта создают простую виртуальную геометрическую фигуру (параллелепипед, шар), расчет пересечений для объекта выполняют только при пересечении траектории наблюдения с фигурой в целом.

Применение сложных математических моделей позволяет имитировать такие физические эффекты, как взрывы, дождь, огонь, дым, туман. Существуют методы расчета процедурных эффектов (Procedural Effects) и взаимодействия систем частиц (Particle System). Однако их применение в полном объеме требует громадных вычислительных ресурсов, и потому в персональных компьютерах обычно используют упрощенные варианты. По завершении рендеринга компьютерную трехмерную анимацию используют либо как самостоятельный продукт, либо в качестве отдельных частей или кадров готового продукта (рис. 15.8).



Особую область трехмерного моделирования в режиме реального времени составляют тренажеры технических средств — автомобилей, судов, летательных и космических аппаратов. В них необходимо очень точно реализовывать технические параметры объектов и свойства окружающей физической среды. В более простых вариантах, например при обучении вождению наземных транспортных средств, тренажеры реализуют на персональных компьютерах.

Самые совершенные на сегодняшний день устройства созданы для обучения пилотированию космических кораблей и военных летательных аппаратов. Моделированием и визуализацией объектов в таких тренажерах заняты несколько специализированных графических станций, построенных на мощных Ж5С-процессорах и скоростных видеоадаптерах с аппаратными ускорителями трехмерной графики. Общее управление системой и просчет сценариев взаимодействия возложены на суперкомпьютер, состоящий из десятков и сотен процессоров. Стоимость таких комплексов выражается девятизначными цифрами, но их применение окупается достаточно быстро, так как обучение на реальных аппаратах в десятки раз дороже.


 

Рис. 15.8. Моделирование взрыва методом Particle System

 

Программные средства обработки трехмерной графики

На персональных компьютерах основную долю рынка программных средств обработки трехмерной графики занимают три пакета. Эффективней всего они работают на самых мощных машинах (в двух- или четырехпроцессорных конфигурациях Pentium II/III, Xeon) под управлением операционной системы Windows NT.



Программа создания и обработки трехмерной графики 3D Studio Max фирмы Kinetix изначально создавалась для платформы Windows. Этот пакет считается «полупрофессиональным». Однако его средств вполне хватает для разработки качественных трехмерных изображений объектов неживой природы (рис, 15.9). Отличительными особенностями пакета являются поддержка большого числа аппаратных ускорителей трехмерной графики, мощные световые эффекты, большое число дополнений, созданных сторонними фирмами. Сравнительная нетребовательность к аппаратным ресурсам позволяет работать даже на компьютерах среднего уровня. Вместе с тем по средствам моделирования и анимации пакет 3D Studio Max уступает более развитым программным средствам.

 


Рис. 15.9. Трехмерное моделирование ландшафта средствами

3D Studio Max

 

Программа Softimage 3D компании Microsoft изначально создавалась для рабочих станций SGIw. лишь сравнительно недавно была конвертирована под операционную систему Windows NT. Программу отличают богатые возможности моделирования, наличие большого числа регулируемых физических и кинематографических параметров. Для рендеринга применяется качественный и достаточно быстрый модуль Mental Ray. Существует множество дополнений, выпущенных «третьими» фирмами, значительно расширяющих функции пакета. Эта программа считается стандартом «де-факто» в мире специализированных графических станций SGI, а на платформе IBM PC выглядит несколько тяжеловато и требует мощных аппаратных ресурсов.

Наиболее революционной с точки зрения интерфейса и возможностей является программа Maya, разработанная консорциумом известных компаний (Alias, Wavefront, TDI). Пакет существует в вариантах для разных операционных систем, в том числе и Windows NT. Он имеет модульное построение и включает следующие блоки.

• Base — содержит ядро программы. Обеспечивает поддержку основных инструментов моделирования, инверсной кинематики, обработки звука, имитации физических твердых тел, захвата движения, рендеринга и основных наборов эффектов.

• Maya F/X — набор дополнительных модулей, поддерживающих эффекты обработки систем частиц и моделирования физики взаимодействия мягких тел.

• Maya Power Modeler — в основном содержит мощные средства полигонального и сплайнового моделирования объектов;

• Maya Artisan — наиболее передовой модуль, позволяющий обрабатывать виртуальные модели методами, характерными для реальной работы скульпторов и художников. Позволяет, к примеру, рисовать по поверхности объекта «кистями», сглаживать поверхности или делать их более шероховатыми «скульптурными резцами»;

• Maya Cloth — предназначен для моделирования одежды;

• Maya Fur — модуль для имитации поверхностей, покрытых шерстью или мехом (рис. 15.10);

Рис. 15.10. Моделирование меховой поверхности средствами пакета Maya

 

• Maya Live — сценарный модуль, обеспечивающий сопряжение реальных съемок (на «натуре») с компьютерной анимацией.

Инструментарий Maya сведен в четыре группы: Animation (анимация), Modeling (моделирование), Dynamic (физическое моделирование), Rendering (визуализация). Удобный настраиваемый интерфейс выполнен в соответствии с современными требованиями. На сегодняшний день Maya является наиболее передовым пакетом в классе средств создания и обработки трехмерной графики для персональных компьютеров.


Дата добавления: 2015-05-08; просмотров: 4; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.022 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты