КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Лекция № 7. Медицинская биотехнология и генная инженерия. Микробиологические основы антимикробной профилактики и терапии.Достижения научно- технического прогресса способствовали развитию новых биологических технологий создания диагностических, лечебных и профилактических препаратов, решению проблем сбалансированности питания, экологических проблем. Основные принципы биотехнологии- ферментация, культивирование микроорганизмов, растительных и животных клеток, генная и клеточная инженерия. Генная инженерия- сердцевина современной биотехнологии. На основе достижений генетики разработаны высокоточные методы диагностики и идентификации микроорганизмов- определение плазмидного профиля, рестрикционный анализ, ДНК- гибридизация, полимеразная цепная реакция (ПЦР), секвенирование и мн.др. Методы основаны на использовании ряда специфических ферментов- рестриктаз (ферментов, расщепляющих ДНК в специфических участках), лигаз или синтетаз (обеспечивают соединение двух молекул), в частности ДНК- лигаз (получение рекомбинантных молекул ДНК), полимераз (ДНК- зависимая ДНК- полимераза обеспечивает ПЦР- многократное реплицирование специфического участка нуклеотидной последовательности). Плазмиды (F- плазмиды) и вирусы (бактериофаги) используют в генной инженерии в качестве векторов для переноса генетического материала (генов). Метод клонирования заключается в том, что выделенный фрагмент (ген) вводится в состав плазмиды или другой самореплицирующейся системы и накапливается в размножающихся клетках. Практический вариант использования: микроорганизмы- продуценты биологически активных веществ (в том числе вакцин). Гибридомную технологию используют для получения моноклональных антител (МКА). Кроме клонирования для получения генов используют секвенирование и химический синтез. С помощью генно- инженерных методов получают вакцины, антигены, диагностикумы, гормоны, иммуномодуляторы. Одним из крупных разделов биотехнологии является производство антибиотиков и различных химиотерапевтических препаратов антибактериального действия. Методы воздействия на микроорганизмы по виду использованного фактора можно разделить на физические и химические, по характеру воздействия- на неизбирательные (обеззараживание- дезинфекция, стерилизация) и избирательные (химиотерапевтические). Физические методы. 1.Термическая обработка- прокаливание, кипячение, пастеризация, автоклавирование. 2.Облучение- ультрафиолетовое, гамма- и рентгеновское, микроволновое. 3.Фильтрование (оптимально- бактериологические фильтры с диаметром пор около 200 нм). Химические методы. 1.Неспецифического действия- дезинфектанты (обработка помещений и др., антисектики- обработка живых тканей). Среди них- препараты йода и хлора, спирты, альдегиды, кислоты и щелочи, соли тяжелых металлов, катионные детергенты, фенолы, окислители, природные препараты- деготь, ихтиол, хлорофиллипт. 2.Избирательно подавляющие жизнедеятельность микроорганизмов- антибиотики и химиотерапевтические препараты. Эре антибиотикотерапии предшествовал период разработки антимикробных химиопрепаратов. Некоторые вехи: в 1891г. Д.А.Романовский сформулировал основные принципы химиотерапии инфекционных болезней, предложил хинин для лечения малярии, П.Эрлих в 1906г. предложил принцип химической вариации. Синтезированы производные мышьяка сальварсан и неосальварсан, предложен химиотерапевтический индекс. Круг химиопрепаратов постепенно расширялся. В 1932г. открыты подходы к созданию сульфаниламидных препаратов. Однако поистинне революционное значение имело открытие антибиотиков. Одним из универсальных механизмов антогонизма микроорганизмов является синтез антибиотиков, которые тормозят рост и размножение микроорганизмов (бактериостатическое действие) или убивают их (бактерицидное действие). Антибиотики- вещества, которые могут быть получены из микроорганизмов, растений, животных тканей и синтетическим путем, обладающие выраженной биологической активностью в отношении микроорганизмов. Таких веществ известно несколько тысяч, однако реально используют значительно меньше. Существует ряд требований к антибиотикам, существенно ограничивающих их терапевтическое применение: - эффективность в низких концентрациях; - стабильность в организме и в различных условиях хранения; - низкая токсичность или ее отсутствие; - выраженный бактериостатический и (или) бактерицидный эффект; - отсутствие выраженных побочных эффектов; - отсутствие иммунодепрессивного воздействия. Первыми открытыми антибиотиками были пенициллин (Флеминг) и стрептомицин (Ваксман). Антибиотики могут быть разделены по происхождению, направленности и спектру действия, по механизму действия. По происхождению антибиотики могут быть: - бактериального (полимиксин, грамицидин); - актиномицетного (стрептомицин, левомицетин, эритромицин); - грибкового (пенициллин); - растительного (рафанин, фитонциды); - животного происхождения (интерфероны, лизоцим). Больше всего известно антибиотиков актиномицетного происхождения. Актиномицеты- преимущественно почвенные микроорганизмы. В условиях большого количества и разнообразия почвенных микроорганизмов их антогонизм, в том числе с помощью выработки антибиотиков- один из механизмов их выживания. По спектру действия антибиотики разделяют на: - действующие преимущественно на грамположительную микрофлору- пенициллин, эритромицин; - действующие преимущественно на грамотрицательную микрофлору- полимиксин; - широкого спектра действия ( на грам-плюс и грам-минус флору)- стрептомицин, неомицин;
- противогрибковые- нистатин, амфотеррицин, леварин, низорал; - противотуберкулезные- стрептомицин, канамицин; - противоопухолевые- рифампицин; - противовирусные- интерферон, зовиракс, ацикловир. Антибиотики разделяют по механизму действия: - ингибиторы синтеза пептикогликана клеточной стенки ( пенициллин, цефалоспорин, ванкомицин, ристомицин). Действуют на имеющих клеточную стенку растущие бактерии, не действуют на L- формы, покоящиеся формы бактерий; - ингибиторы синтеза белка (стрептомицин, левомицетин, тетрациклин); - ингибиторы синтеза нуклеиновых кислот, пуринов и аминокислот (налидиксовая кислота, рифампицин); - ингибиторы синтеза мембраны и цитоплазматической мембраны грибов (нистатин, полимиксин). Побочное действие антибиотиков. Для макроорганизма: - токсическое действие; - дисбактериозы; - аллергические реакции; - иммунодепрессивное действие; - эндотоксический шок. Для микроорганизмов : - формирование атипичных форм микробов; - формирование антибиотикорезистентных и антибиотикозависимых форм микроорганизмов. Биохимические и генетические механизмы лекарственной устойчивости микроорганизмов. Существует два типа лекарственной устойчивости- естественная (природная) и приобретенная (в результате мутаций, обмена R- плазмидами др.). Естественная лекарственная устойчивость является видовым признаком, чаще связана с недоступностью антибиотика к его мишени, т.е. невозможностью осуществления его механизма действия. В природных условиях, особенно в почве, микроорганизмы находятся в конкурентной борьбе за субстраты. Антибиотики- один из селективных факторов отбора. Микроорганизмы- продуценты антибиотиков защищены от синтезируемых антибиотиков генетическими механизмами (генетически детерминированная устойчивость, кодируемая в хромосоме или обусловленная наличием R- плазмид). Микроорганизмы в условиях совместного обитания вынуждены вырабатывать устойчивость к антибиотикам. Резистентность к антибиотикам у микробов может быть связана с негенетическими факторами (низкая метаболическая активность, переход в L- форму). Основную роль в лекарственной устойчивости принадлежит R- плазмидам, способным передаваться в другие бактерии и формировать своеобразный генофонд лекарственной устойчивости микроорганизмов. Резистентность современных стафилококков к пенициллину доходит до 100%. На биохимическом уровне в формировании резистентности могут участвовать различные механизмы. 1.Разрушение молекулы антибиотика (пенициллины и другие бета- лактамные антибиотики разрушаются ферментом бета- лактамазой). 2.Модификация структуры молекулы антибиотика, приводящая к утрате биологической активности ( так действуют изоферменты). 3.Изменение структуры мишеней, чувствительных к антибиотику (белков 70S рибомос- устойчивость к тетрациклинам, стрептомицину, макролидам, гираз- к хинолонам, рнк- полимераз- к рифампицину, пенициллинсвязывающих белков- транспептидаз- к бета- лактамам). 4.Образование бактериями “обходного” пути метаболизма. 5.Формирование механизмов активного выведения антибиотика из клетки. Из-за формирования антибиотикоустойчивых популяций микроорганизмов с целью эффективного лечения необходимо предварительно определять чувствительность данного антибиотика к выделенной культуре возбудителя. Основными методами определения антибиотикочувствительности бактерий in vitro является метод серийных разведений, диффузии в агар (бумажных дисков), определение способности к продукции бета- лактамазы, in vivo- на модели безмикробных животных, определение концентрации антибиотиков в крови и моче. Метод диффузии в агар с применением стандартных дисков, пропитанных различными антибиотиками в определенных концентрациях (зависят от терапевтической дозы и соотвествуют рекомендациям ВОЗ). Основан на использовании стандартных питательных сред, дисков и методов. Оценка результатов связана с существованием зависимости между размером зоны подавления роста исследуемых культур вокруг дисков и значениями минимальных подавляющих концентраций (МПК)соответствующих антибиотиков (чувствительностью микроорганизмов). Имеются специальные таблицы для оценки результатов, в соответствии с которыми культуры определяют как чувствительные, умеренно устойчивые и устойчивые (резистентные) к тестируемому антибиотику. Метод серийных разведений антибиотиков позволяет более точно определить МПК, однако из-за громоздкости применяется реже. Бета- лактамазный тест (определение способности к образованию бета- лактамаз) чаще определяют методом дисков с нитроцефином - цефалоспорином, изменяющим окраску дисков при гидролизе. Положительный тест свидетельствует о резистентности бактерий ко всем бета- лактамаза- чувствительным пенициллинам. Существует ряд причин, обусловливающих различную чувствительность микроорганизмов к антибиотикам in vitro и in vivo. На антимикробную активность in vitro влияют многие факторы, в том числе : - рН среды; - компоненты среды; - концентрация микроорганизмов; - условия и время культивирования. На антимикробную активность препаратов in vivo также влияют различные факторы, из которых необходимо отметить: - фармакодинамику препарата в организме (скорость всасывания, выведения, расщепления и т.д.); - локализацию микробов в организме (особенно внутриклеточную локализацию).
|