КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Пример 4. ⇐ ПредыдущаяСтр 5 из 5 Покажем расчет дисперсии для интервального ряда на данных о распределении посевной площади колхоза по урожайности пшеницы:
Таблица 6.4
Средняя арифметическая равна: ц с 1га. Исчислим дисперсию: Расчет дисперсии по формуле по индивидуальным данным и в рядах распределения. Техника вычисления дисперсии сложна, а при больших значениях вариант и частот может быть громоздкой. Расчеты можно упростить, используя свойства дисперсии. Свойства дисперсии. Уменьшение или увеличение весов (частот) варьирующего признака в определенное число раз дисперсии не изменяет. Уменьшение или увеличение каждого значения признака на одну и ту же постоянную величину А дисперсии не изменяет. Уменьшение или увеличение каждого значения признака в какое-то число раз к соответственно уменьшает или увеличивает дисперсию в раз, а среднее квадратическое отклонение - в к раз. Дисперсия признака относительно произвольной величины всегда больше дисперсии относительно средней арифметической на квадрат разности между средней и произвольной величиной: . Если А равна нулю, то приходим к следующему равенству: , т.е. дисперсия признака равна разности между средним квадратом значений признака и квадратом средней. Каждое свойство при расчете дисперсии может быть применено самостоятельно или в сочетании с другими. Порядок расчета дисперсии простой: 1) определяют среднюю арифметическую ; 2) возводят в квадрат среднюю арифметическую; 3) возводят в квадрат каждую варианту ряда ; 4) находим сумму квадратов вариант ; 5) делят сумму квадратов вариант на их число, т.е. определяют средний квадрат ; 6) определяют разность между средним квадратом признака и квадратом средней .
|