КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Первый замечательный предел.Лекция 13. Замечательные пределы. Первый замечательный предел.
♦ Теорема 13.1 (о пределе промежуточной функции).Если в некоторой окрестности точки (или при достаточно больших значениях x) функция заключена между двумя функциями и , имеющими одинаковый предел A при , то функция имеет тот же предел A. Доказательство.Пусть при . Это означает, что для любого найдётся число такое, что для всех и удовлетворяющих условию будут верны одновременно неравенства и или , . Так как по условию , то , то есть и это означает, что . ■
♦ Теорема 13.2 (первый замечательный предел). . (13.1) Доказательство. Рассмотрим круг радиуса R с центром в точке O (рис. 13.1). Пусть OB – подвижный радиус, образующий угол x с осью OA. Площадь треугольника AOB меньше площади сектора AOB, которая в свою очередь меньше площади треугольника AOC, то есть .
Таким образом, . Функции и чётные, поэтому полученные неравенства справедливы и при . При переходе к пределу при получим , и на основании теоремы 13.1 предел промежуточной функции . ■
J Пример 13.1.1) . 2) . J
|