КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
В закрытых системахОсновными процессами, весьма важными и в теоретическом, и в прикладном отношениях, являются: изохорный, протекающий при постоянном объеме; изобарный, протекающий при постоянном давлении; изотермический, происходящий при постоянной температуре; адиабатный — процесс, при котором отсутствует теплообмен с окружающей средой, и политропный, удовлетворяющий уравнению . Метод исследования процессов, не зависящий от их особенностей и являющийся общим, состоит в следующем: выводится уравнение процесса, устанавливающее связь между начальными и конечными параметрами рабочего тела в данном процессе; вычисляется работа изменения объема газа; определяется количество теплоты, подведенной (или отведенной) к газу в процессе; определяется изменение внутренней энергии системы в процессе; определяется изменение энтропии системы в процессе. Изохорный процесс.При изохорном процессе выполняется условие dv = 0 или v = const. Из уравнения состояния идеального газа следует, что p/T=R/v=const, т. е. давление газа прямо пропорционально его абсолютной температуре: . Рисунок 5.1 - Изображение изохорного процесса в р,v- и T, s-координатах Работа расширения в этом процессе равна нулю, так как dv= 0. Количество теплоты, подведенной к рабочему телу в процессе 12 при , определяется как: При переменной теплоемкости , где — средняя массовая изохорная теплоемкость в интервале температур от t1 до t2. Так как 1= 0, то в соответствии с первым законом термодинамики и Поскольку внутренняя энергия идеального газа является функцией только его температуры, то полученные формулы справедливы для любого термодинамического процесса идеального газа. Изменение энтропии в изохорном процессе определяется по формуле , т. е. зависимость энтропии от температуры на изохоре при сv = const имеет логарифмический характер. Изобарный процесс.Из уравнения состояния идеального газа при р=const находим , или , т. е. в изобарном процессе объем газа пропорционален его абсолютной температуре (закон Гей-Люссака, 1802 г.). На рисунке изображен график процесса. Рисунок 5.2 - Изображение изобарного процесса в p,v- и T,s-координатах Из выражения следует, что . Так как и , то одновременно Количество теплоты, сообщаемое газу при нагревании (или отдаваемое им при охлаждении): , где — средняя массовая изобарная теплоемкость в интервале температур от t1до t2при = const . Изменение энтропии при ср = const согласно равно , т. е. температурная зависимость энтропии при изобарном процессе тоже имеет логарифмический характер, но поскольку ср>сv, то изобара в Т,s-диаграмме идет более полого, чем изохора. Изотермический процесс.При изотермическом процессе температура постоянна, следовательно, pv = RT = const, или , т. е. давление и объем обратно пропорциональны друг другу, так что при изотермическом сжатии давление газа возрастает, а при расширении — падает (закон Бойля — Мариотта, 1662 г.). Графиком изотермического процесса в р,v –координатах является равнобокая гипербола, для которой координатные оси служат асимптотами . Работа процесса: . Так как температура не меняется, то внутренняя энергия идеального газа в данном процессе остается постоянной ( ) и вся подводимая к газу теплота полностью превращается в работу расширения:
Рисунок 5.3 - Изображение изотермического процесса в р, v- и T, s-координатах.
При изотермическом сжатии от газа отводится теплота в количестве, равном затраченной на сжатие работе. Изменение энтропии в изотермическом процессе выражается формулой . Адиабатный процесс.Процесс, происходящий без теплообмена с окружающей средой, называется адиабатным, т. е. . Для того чтобы осуществить такой процесс, следует либо теплоизолировать газ, т. е. поместить его в адиабатную оболочку, либо провести процесс настолько быстро, чтобы изменение температуры газа, обусловленное его теплообменом с окружающей средой, было пренебрежимо мало по сравнению с изменением температуры, вызванным расширением или сжатием газа. Как правило, это возможно, ибо теплообмен происходит значительно медленнее, чем сжатие или расширение газа. Уравнения первого закона термодинамика для адиабатного процесса принимают вид: . Поделив первое уравнение на второе, получим Интегрируя последнее уравнение при условии, что k =cp/cv=const, находим После потенцирования имеем . * Это и есть уравнения адиабаты идеального газа при постоянном отношении теплоемкостей (k = const). Величина называется показателем адиабаты. Подставив cp = cv-R, получим k. Согласно классической кинетической теории теплоемкость газов не зависит от температуры, поэтому можно считать, что величина k также не зависит от температуры и определяется числом степеней свободы молекулы. Для одноатомного газа k=1,66 для двухатомного k=1,4, для трех- и многоатомных газов k=l,33. Поскольку k>1, то в координатах р,v линия адиабаты идет круче линии изотермы: при адиабатном расширении давление понижается быстрее, чем при изотермическом, так как в процессе расширения уменьшается температура газа. Рисунок 5.4 - Изображение адиабатного процесса в р, v- и Т, s-координатах Определив из уравнения состояния, написанного для состояний 1и 2, отношение объемов или давлений, получим уравнение адиабатного процесса в форме, выражающей зависимость температуры от объема или давления: ; . Работа расширения при адиабатном процессе согласно первому закону термодинамики совершается за счет уменьшения внутренней энергии и может быть вычислена по одной из следующих формул: . Так как и , то . В данном процессе теплообмен газа с окружающей средой исключается, поэтому q=0. Выражение показывает, что теплоемкость адиабатного процесса равна нулю. Поскольку при адиабатном процессе = 0, энтропия рабочего тела не изменяется (ds=0 и s=const). Следовательно, на Т,s-диаграмме адиабатный процесс изображается вертикалью. Политропный процесс и его обобщающее значение.Любой произвольный процесс можно описать в р,v-координатах (по крайней мере на небольшом участке) уравнением , подбирая соответствующее значение п. Процесс, описываемый таким уравнением, называется политропным. Показатель политропы n может принимать любое численное значение в пределах от , но для данного процесса он является величиной постоянной. Из уравнения Клапейрона нетрудно получить выражения, устанавливающие связь между р, v и Т в любых двух точках на политропе, аналогично тому, как это было сделано для адиабаты: ; ; . (5.1) Работа расширения газа в политропном процессе имеет вид . Так как для политропы в соответствии с (5.1) , то (5.2) Уравнение (5.1) можно преобразовать к виду: Количество подведенной (или отведенной) в процессе теплоты можно определить с помощью уравнения первого закона термодинамики: . Поскольку , то , где представляет собой теплоемкость идеального газа в политропном процессе. При постоянных cv, k и п теплоемкость сn = const, поэтому политропный процесс иногда определяют как процесс с постоянной теплоемкостью. Изменение энтропии . Политропный процесс имеет обобщающее значение, ибо охватывает всю совокупность основных термодинамических процессов. Ниже приведены характеристики термодинамических процессов.
На рисунке показано взаимное расположение на р, V- и Т, s-диаграммах политропных процессов с разными значениями показателя политропы. Все процессы начинаются в одной точке («в центре»).
Рисунок 5.5 - Изображение основных термодинамических процессов идеального газа в р, v- и Т, s-координатах
Изохора (п= ± ) делит поле диаграммы на две области: процессы, находящиеся правее изохоры, характеризуются положительной работой, так как сопровождаются расширением рабочего тела; для процессов, расположенных левее изохоры, характерна отрицательная работа. Процессы, расположенные правее и выше адиабаты, идут с подводом теплоты к рабочему телу; процессы, лежащие левее и ниже адиабаты, протекают с отводом теплоты. Для процессов, расположенных над изотермой ( = 1), характерно увеличение внутренней энергии газа; процессы, расположенные под изотермой, сопровождаются уменьшением внутренней энергии. Процессы, расположенные между адиабатой и изотермой, имеют отрицательную теплоемкость, так как и du (а следовательно, и dT), имеют в этой области противоположные знаки. В таких процессах , поэтому на производство работы при расширении тратится не только подводимая теплота, но и часть внутренней энергии рабочего тела.
|