Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Циклы газотурбинных установок




В циклах ДВС рабочее тело выбра­сывается из цилиндра с температурой и давлением , которые превышают соответствующие параметры окружаю­щей среды р0, То, практически совпадаю­щие с Поэтому циклам ДВС при­сущи потери эксергии из-за «недорасширения» газов до параметров окружающей среды. Их удается значительно сократить в циклах газотурбинных установок.

Рисунок 8.4 - Схема газотурбинной установки

Воздушный компрессор К сжимает атмосферный воздух, повышая его давление от р1до р2 и непрерывно подает его в камеру сгорания КС. Туда же специальным нагнетателем Н непрерывно подается необходимое количество жидкого или газообразного топлива. Образующиеся в камере продукты сгорания выходят из нее с температурой и практически с тем же давлением (если не учитывать сопротивления), что и на выходе из компрессора ( )- следовательно, горение топлива (т. е. подвод теплоты) происходит при постоянном давлении.

В газовой турбине Т продукты сгорания адиабатно расширяются, в результате чего их температура снижается до Т4, а давление уменьшается до атмосферного. Весь перепад давлений используется для получения технической работы в турбине . Большая часть этой работы lк расходуется на привод компрессора; разность является полезной и используется, например, на производство электроэнергии в электри­ческом генераторе ЭГ или на другие цели (при использовании жидкого топлива расход энергии на привод топливного насоса невелик, и в первом приближении его можно не учитывать).

Рисунок 8.5 - Цикл газотурбинной установки:

а — в p,v-координатах; б — в T,s-координатах

Заменив сгорание топлива изобар­ным подводом теплоты (линия 2-3 на рисунке), а охлаждение выброшенных в атмосферу продуктов сгорания — изо­барным отводом теплоты (линия 4-1), получим цикл газотурбинной установки 1-2-3-4.

Полезная работа lц изображается площадью, заключенной внутри контура цикла (площадь 1-2-3-4). На рис. 6.5, а видно, что полезная работа равна разно­сти между технической работой, полученной в турбине (площадь 6-3-4-5), и технической работой, затраченной на привод компрессора (площадь 6-2-1-5). Площадь цикла 1-2-3-4 в Т,s-диаграмме эквивалента этой же полезной работе (рис. б). Теплота, превращенная в работу, получается как разность между количествами подведенной (площадь 8-2-3-7) и отведенной (площадь 1-4-7-8) теплоты. Коэффициент полезного дей­ствия идеального цикла ГТУ

При этом теплоемкость ср принята для простоты постоянной. Одной из основных характеристик цикла газотурбинной установки является степень повышения давления в компрессоре , равная отношению давления воздуха после компрессора р2 к давлению перед ним. Тогда коэффициент полезного действия идеального цикла ГТУ

Коэффициент полезного действия идеального цикла непрерывно возрастает с увеличением . Это связано с увеличением температуры в конце процесса сжатия и соответственно температуры газов перед турбиной .На рис. б отчетливо видно, что цикл 1-2'-3'-4, в котором больше, экономичнее цикла 1-2-3-4, ибо по линии 2'-3' подводится больше теплоты , чем по линии 2-3, при том же количестве отведенной в процессе 4-1 теплоты . При этом и больше, чем соответственно и .

Дело в том, что с увеличением возрастает эксергия рабочего тела перед турбиной, т. е. уменьшаются потери эксергии при сгорании, поскольку эксергия исходного топлива постоянна (равна теплоте его сгорания). Это и увеличивает КПД цикла.

Максимальная температура газов пе­ред турбиной ограничивается жаропроч­ностью металла, из которого делают ее •элементы. Применение охлаждаемых ло­паток из специальных материалов позво­лило повысить ее до 1400—1500°С в авиации (особенно на самолетах-перехватчиках, где ресурс двигателя мал) и до 1050—1090°С в стационарных турбинах, предназначенных для длительной работы. Непрерывно разрабатываются более надежные схемы охлаждения, обеспечивающие дальнейшее повышение температуры. Поскольку она все же ниже предельно достижимой при горении, приходится сознательно идти на сниже­ние температуры горения топлива (за cчет подачи излишнего количества воз­духа). Это увеличивает эксергетические потери от сгорания в ГТУ иногда до 40 %.

Газы выбрасывают из турбины с тем­пературой . Следовательно, эксергия рабочего тела, которой мы располагаем перед турбиной, используется также не полностью: потери эксергии с уходящими газами могут доходить до 10 %. Поэтому КПД ГТУ оказывается пока еще ниже, чем ДВС.

Не имея деталей с возвратно-поступательным движением, газовые турбины могут развивать значительно большие мощности, чем ДВС. Предельные мощности ГТУ сегодня составляют 100—200 МВт. Они определяются высотой лопаток, прочность которых должна выдержать напряжения от центробежных усилий, возрастающих с увеличением их высоты и частоты вращения вала. Поэто­му газовые турбины применяются пре­жде всего в качестве мощных двигателей в авиации и на морском флоте, а также в маневренных стационарных энергети­ческих установках.

Ряд технологических процессов, особенно химической промышленности, свя­зан с потоками нагретых сжатых газов. Расширение этих газов в газовой турбине позволяет получить энергию, которая обычно используется в этом же процессе, например для нагнетания тех же газов. В этом случае вал турбины непосредственно соединяется с валом турбоком­прессора. Такое комбинирование позволяет существенно снизить потребление энергии в технологическом процессе. К сожалению, оно используется еще не­достаточно широко, во-первых, из-за косности мышления технологов, а во-вторых, из-за отсутствия турбин на нужные параметры, Часто используют авиационные двигатели, выработавшие свой ресурс.

В энергетике газовые турбины иногда используют для привода воздуходувок, нагнетающих воздух в топку котла, работающую под давлением. Для этого продукты сгорания, охлажденные в котле до необходимой температуры, направляются в турбину, сидящую на одном валу с воздуходувкой, и расширяются в ней до атмосферного давления, совершая работу.


Поделиться:

Дата добавления: 2015-08-05; просмотров: 133; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты