КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Классификация нейроновВ основном, нейроны классифицируют на основе их положения в топологии сети. Разделяют: Входные нейроны — принимают исходный вектор, кодирующий входной сигнал. Как правило, эти нейроны не выполняют вычислительных операций, а просто передают полученный входной сигнал на выход, возможно, усилив или ослабив его; Выходные нейроны — представляют из себя выходы сети. В выходных нейронах могут производиться какие-либо вычислительные операции; Промежуточные нейроны — выполняют основные вычислительные операции[9]. Искусственная нейронная сеть (ИНС, нейронная сеть) - это набор нейронов, соединенных между собой. Как правило, передаточные функции всех нейронов в нейронной сети фиксированы, а веса являются параметрами нейронной сети и могут изменяться. Основу каждой искусственной нейронной сети составляют относительно простые, в большинстве случаев - однотипные, элементы (ячейки), имитирующие работу нейронов мозга (далее под нейроном мы будем подразумевать искусственный нейрон, ячейку искусственной нейронной сети). Функция активации (активационная функция, функция возбуждения) – функция, вычисляющая выходной сигнал искусственного нейрона. В качестве аргумента принимает сигнал , получаемый на выходе входного сумматора . Наиболее часто используются следующие функции активации. 1. Единичный скачок или жесткая пороговая функция Простая кусочно-линейная функция. Если входное значение меньше порогового, то значение функции активации равно минимальному допустимому, иначе – максимально допустимому. 2. Линейный порог или гистерезис Несложная кусочно-линейная функция. Имеет два линейных участка, где функция активации тождественно равна минимально допустимому и максимально допустимому значению и есть участок, на котором функция строго монотонно возрастает. 3. Сигмоидальная функция или сигмоид Монотонно возрастающая всюду дифференцируемая -образная нелинейная функция с насыщением. Сигмоид позволяет усиливать слабые сигналы и не насыщаться от сильных сигналов. Гроссберг (1973 год) обнаружил, что подобная нелинейная функция активации решает поставленную им дилемму шумового насыщения. Слабые сигналы нуждаются в большом сетевом усилении, чтобы дать пригодный к использованию выходной сигнал. Однако усилительные каскады с большими коэффициентами усиления могут привести к насыщению выхода шумами усилителей, которые присутствуют в любой физически реализованной сети. Сильные входные сигналы в свою очередь также будут приводить к насыщению усилительных каскадов, исключая возможность полезного использования выхода. Каким образом одна и та же сеть может обрабатывать как слабые, так и сильные сигналы? Примером сигмоидальной функции активации может служить логистическая функция, задаваемая следующим выражением: где – параметр наклона сигмоидальной функции активации. Изменяя этот параметр, можно построить функции с различной крутизной. Еще одним примером сигмоидальной функции активации является гиперболический тангенс, задаваемая следующим выражением: где – это также параметр, влияющий на наклон сигмоидальной функции. В заключение отметим, что функции активации типа единичного скачка и линейного порога встречаются очень редко и, как правило, используются на учебных примерах. В практических задач почти всегда применяется сигмоидальная функция активации.
|