КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Электрохимическая коррозия металлов.
Коррозией металлов называется процесс их разрушения в результате взаимодействия с окружающей средой. Коррозия металлов может протекать по химическому и электрохимическому механизму. Химическая коррозия является следствием химического взаимодействия металла с тем или иным окислителем окружающей среды. Электрохимическая коррозия в простейшем случае протекает вследствие работы на поверхности металла короткозамкнутых гальванических элементов – гальванопар. Причин образования короткозамкнутых гальванопар множество: например, кристаллическая неоднородность металла, микрошероховатость поверхности, наличие примесей и пр. все это приводит к тому, что различные участки поверхности имеют различные значения электродного потенциала, т.е. поверхность металла может рассматриваться как совокупность электродов, одни из которых в условиях контакта поверхности с электролитом окружающей среды будут играть роль анода, другие катода. В отличие от обычных гальванических элементов анод и катод гальванопар на поверхности металла имеют общий электролит. В типичных случаях электрохимической коррозии короткозамкнутые гальванопары имеют микроскопические размеры и потому называются микрогальванопарами. Коррозию металла вызывает работа не всех микрогальванопар, а лишь тех, в которых металл играет роль анода. Общую схему таких микрогальванопар можно записать следующим образом: neˉ |¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯↓ А − Ме │электролит окружающей среды│катодный участок + К ↑____________________| При работе таких микрогальванопар коррозию металла вызывает процесс его анодного окисления: Ме = Меn+ +neˉ. На катодных участках происходит восстановление окислителя электролита. В кислой среде восстанавливаются ионы Н+ согласно уравнению: 2Н+ + 2еˉ = Н2. В остальных случаях протекает процесс восстановления атмосферного кислорода с участием воды: О2 + 2Н2О + 4 еˉ = 4ОН‾ ПРИМЕР 3: электрохимическая коррозия железа в кислой среде. В качестве конкретного примера рассмотрим коррозию железа в воздухе, содержащем сернистый газ SO2. На поверхности железа в данном случае образуется пленка сернистой кислоты вследствие взаимодействия сернистого газа с парами воды: SO2 +Н2О = Н2 SO3. Записываем схему микрогальванопар, работа которых в рассматриваемых условиях будет приводить к коррозии железа: А - Fe| Н2 SO3| катодный участок +К Записываем уравнение электродных процессов, протекающих при работе таких микрогальванопар: А: Fe = Fe2++2е‾ − окисление железа на анодных участках (коррозия железа) К: 2Н+ + 2еˉ = Н2 − восстановление ионов Н+ на катодных участках. Fe + 2Н+ = Fe2++Н2 − суммарное уравнение электрохимической коррозии. ПРИМЕР 4: Атмосферная коррозия железа. Атмосферная коррозия – это электрохимическая коррозия металлов, протекающая в нейтральной среде. Коррозия железа в данных условиях происходит вследствие работы микрогальванопар: А − Fe| O2 , Н2О | катодный участок +К. процессы, протекающие при работе таких микрогальванопар, выражаются следующими уравнениями: А: Fe = Fe2++2е- − окисление железа на анодных участках (коррозия железа) К: О2 + 2Н2О + 4 еˉ = 4ОН‾ − восстановление на катодных участках 2 Fe + О2 + 2 Н2О = 2 Fe2++4ОН‾ − суммарное уравнение электрохимической коррозии. Чтобы предохранить металл от разрушения применяются разнообразные способы защиты от электрохимической коррозии, но все они имеют одно общее: обеспечение условий, предотвращающих работу микрогальванопар. Наиболее распространенным является метод защиты от коррозии путем создания на поверхности металлов изолирующих покрытий: лакокрасочные покрытия, покрытие металлов другими металлами и пр. Механизм защитного действия изолирующих покрытий заключается в том, что они предотвращают доступ окружающей среде к поверхности металла, тем самым делая невозможным работу микрогальванопар (для работы микрогальванопар необходимы не только анодный и катодный участки, но и электролит). При разрушении покрытия, даже незначительном, в месте нарушения сплошности открывается доступ окружающей среды к поверхности металла и тем самым создаются условия для работы микрогальванопар. Среди изолирующих защитных покрытий особое место занимают металлические покрытия. По механизму коррозионного разрушения при нарушении целостности покрытия различают анодные и катодные металлические покрытия. Если электродный потенциал металла покрытия меньше электродного потенциала защищаемого металла, то по отношению к защищаемому металлу металл покрытия является анодом. Поэтому такие металлические покрытия называются анодными. При работе гальванопар в местах нарушения сплошности анодного покрытия разрушается металл покрытия (анод), а защищенный металл (катод) не разрушается. Если же электродный потенциал металла покрытия больше электродного потенциала защищаемого металла, такое покрытие называется катодным, т.к. по отношению к защищаемому металлу металл покрытия является катодом. Поэтому при работе гальванопар в местах нарушения сплошности катодного покрытия коррозии подвергается защищаемый металл. ПРИМЕР 5: коррозионные процессы в нейтральной среде при нарушении сплошности анодного и катодного покрытия на железе. Для железа (Е°= −0,44 В) анодным является покрытие из любого металла с меньшим значением электродного потенциала, например, цинк (Е°= −0,76 В). при нарушении сплошности такого покрытия в нейтральной среде будут работать гальванопары: А–Zn | O2 , Н2О | Fe + К. анодный и катодный процессы, протекающие при том, выражаются уравнениями: А: Zn = Zn 2++2е- − окисление цинка (коррозия металла покрытия) К: О2 + 2Н2О + 4 еˉ = 4ОН‾ − восстановление на железе. 2Zn + О2 + 2 Н2О = 2 Zn2++4ОН‾ − суммарное уравнение электрохимической коррозии. Из записанных уравнений видно, что цинк (и любое анодное покрытие) защищает железо от коррозии не только, пока оно цело, но и в случае нарушения сплошности покрытия. Для создания на железе катодного покрытия необходимо использовать любой металл с большим значением электродного потенциала, например, никель (Е°= −0,25 В). При нарушении сплошности никелевого покрытия в нейтральной среде будут работать гальванопары: А– Fe | O2 , Н2О | Ni + К. Анодный и катодный процессы при работе данных гальванопар следующие: А: Fe = Fe 2++2е- − окисление железа (коррозия защищаемого металла) К: О2 + 2Н2О + 4 еˉ = 4ОН‾ − восстановление на никеле. 2 Fe + О2 + 2 Н2О = 2 Fe 2++4ОН‾ − суммарное уравнение электрохимической коррозии. Как видим, при нарушении сплошности катодное покрытие не защищает железо от коррозии. Из всех случаев коррозии металлов наиболее типичной и часто встречающейся является коррозия железа (сплавов железа). Из выше рассмотренных примеров видно, что электрохимическая коррозия железа заключается в его анодном окислении, в результате чего образуются ионы Fe2+ во внешней среде. Для этого в лабораторной работе используется качественная реакция с красной кровяной солью К3 |Fe (CN6)|. Данная качественная реакция заключается в том, что комплексные ионы красной кровяной соли, взаимодействуя с ионами Fe 2+ , образуют соединение с характерной синей окраской –турнбулеву синь Fe 3|Fe (CN)6|2 : 3 Fe 2++2|Fe (CN6)|3- = Fe 3|Fe (CN)6|2
|