КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
ПОЛОВОЕ РАЗМНОЖЕНИЕ ⇐ ПредыдущаяСтр 4 из 4 Хотя в процессе развития жизни бесполое размножение возникло первым, половое размножение существует на Земле уже более 3 млрд. лет. Оно обнаруживается в жизненных циклах всех основных групп организмов. Распространенность полового размножения объясняется тем, что оно обеспечивает значительное генетическое разнообразие и, следовательно, фенотипическую изменчивость потомства. Этим достигаются большие эволюционные и экологические (расселение) возможности.; В основе полового размножения лежит половой процесс, суть которого сводится к! объединению в наследственном материале для развития; потомка генетической информации от двух разных источников — родителей. Представление о половом процессе дает явление конъюгации, например инфузорий. Он заключается во временном соединении двух особей с целью обмена (рекомбинаций) наследственным материалом. В результате появляются особи, генетически отличные от родительских организмов. В дальнейшем они осуществляют бесполое размножение. Поскольку количество инфузорий после конъюгации остается неизменным. У простейших половой Процесс может осуществляться в виде копуляции, которая заключается в слиянии двух особей в одну, объединении и рекомбинации наследственного материала. Далее такая особь размножается - делением. На определенном этапе эволюции у многоклеточных организмов половой процесс как способ обмена генетической информацией между особями в пределах вида оказался связанным с размножением. - Для участия в половом размножении"! родительских организмах вырабатываются гаметы —клетки, специализированные к обеспечению генеративной функции. Слияние материнской и отцовской гамет приводит к возникновению зиготы — клетки, представляющей собой дочернюю особь на первой, наиболее ранней стадии индивидуального развития. У некоторых организмов зигота образуется в результате объединения гамет, не отличимых по строению. В таких случаях говорят об изогамии. У большинства видов по структурным и функциональным признакам половые клетки делятся на материнские (яйцеклетки) и отцовские (сперматозоиды). Как правило, яйцеклетки и сперматозоиды вырабатываются разными организмами — женскими (самки) и мужскими (самцы). В подразделении гамет на яйцеклетки и сперматозоиды, а особей на самок и самцов заключается явление полового диморфизма (рис. 5.1; 5.2). Наличие его в природе отражает различия в задачах, решаемых в процессе полового размножения мужской или женской гаметой, самцом или самкой. : Образование гамет обоих видов в одном организме, имеющем и мужскую, и женскую половые железы, называют гермафродитизмомх. Гермафродитизм характерен для некоторых паразитов человека, например плоских червей. Несмотря на продукцию гермафродитами и мужских, и женских гамет, самооплодотворение для них нетипично, что связано обычно с несовпадением времени созревания яйцеклеток и сперматозоидов. Истинный гермафродитизм описан у человека. Чаше он развивается в результате нарушения" эмбриогенеза при одинаковом наборе половых хромосом XX ИЛИ XV во всех соматических клетках. У некоторых людей-гермафродитов обнаружен мозаицизм по половым хромосомам. Одни соматические клетки имеют пару XX, другие —XV. Хотя оплодотворение представляет собой характерный признак полового размножения, дочерний организм иногда развивается из неоплодотворенной яйцеклетки. Это явление называют девственным развитием ИЛИ партеногенезом. Источником наследственного материала для развития потомка в этом случае обычно служит ДНК яйцеклетки —гиногенез. Реже наблюдается андрогенез — развитие потомка из клетки с цитоплазмой ооцита и ядром сперматозоида. Ядро женской гаметы в случае андрогенеза погибает.' Обязательный партеногенез является измененной формой полового размножения в эволюции некоторых видов животных. У пчел, например, он используется как механизм генотипического определения пола: женские особи (рабочие пчелы и царицы) развиваются из оплодотворенных яйцеклеток* а мужские (трутни) — партеногенетически.! Партеногенез включен в жизненные циклы многих паразитов Он обеспечивает рост численности особей в условиях, затрудняющих встречу партнеров противоположного пола. Имеются указания на возможность девственного развития у человека. В яичниках девушек, погибших при случайных обстоятельствах, в отсутствие предшествующего осеменения находили зародыши на ранних этапах дробления- Наблюдения завершенного эмбриогенеза с партеногенетическим развитием в отношении человека отсутствуют* При партеногенезе» как й при типичном половом размножении, развиваются особи с диплоидными соматическими клетками. Восстановление диплоидного набора хромосом происходит обычно путем слияния ооцита и редукционного тельца во втором делении мейоза. \ У некоторых видов закономерно наблюдается полиэмбриония — бесполое размножение зародыша, возникающего путем полового размножения. Полиэмбриония, к примеру, типична для броненосцев и заключается в разделении на стадии бластулы клеточного материала первоначально одного зародыша между 4—8 зародышами, из которых развиваются полноценные особи. В результате полиэмбрионии у человека рождаются однояйцовые близнецы.
15. Кариотип и идиограмма хромосом человека. Характеристика кариотипа человека в норме. Диплоидный набор хромосом клетки, характеризующийся их числом, величиной и формой, называется кариотипом (греч. karyon — ядро, typhe— форма). Этот термин введен в 1924 г. советским цитологом Г. А. Левитским. Нормальный кариотип человека включает 46 хромосом, или 23 пары; из них 22 пары аутосом и одна пара — половых хромосом (гетерохромосом). Для изучения кариотипа человека обычно используют клетки костного мозга и культуры фибробластов или лейкоцитов периферической крови, так как эти клетки легче всего получить. При приготовлении препаратов хромо-1 сом к культуре клеток добавляют колхицин, останавливающий деление клеток на стадии метафазы. Затем клетки обрабатывают гипотоническим раствором, отделяющим хромосомы друг от друга, после чего их фиксируют и окрашивают. Благодаря такой обработке каждая хромосома четко видна в световом микроскопе. Длина хромосом колеблется ,от 2,3 до 11 мкм. ; Для того чтобы легче было разобраться в сложном комплексе хромосом, составляющем кариотип, их располагают в виде и д и о г р а м м ы (от греч. idios— своеобразный, gramme— запись). Составление идиограмм, как и сам термин, предложено советским цитологом С. Г. Навашиным (1857---1930). В идиограмме хромосомы располагаются попарно в порядке убывающей величины (рис. 15). Исключение делается для половых хромосом, которые выделяются особо. Наиболее крупной паре хромосом присвоен № 1, следующей — № 2 и т. д. Самая маленькая пара дромосом человека № 22. Как видно на идиограмме, пару половых хромосом женщины составляют две одинаковые крупные хромосомы, названные Х-хромосомами. У мужчин одна Х-хромосома такая же, как у женщин, а 'другая"— гораздо меньшая, У-хромосома. Идентификация хромосом только по величине встречает большие затруднения: ряд хромосом имеет сходные размеры. Однако в последнее время разработаны новые методики для анализа хромосом: использование флюоресцентных красителей, окрашивание хромосом после специальной обработки краской Гимзы (названной так по имени автора) и применение других красителей. , Ними методами установлена четкая дифференцировка хромосом человека по их длине на красящиеся специальными методами и не красящиеся полосы. Рисунок этих полос строго специфичен, индивидуален для каждой пары хромосом (рис. 16). Умение точно дифференцировать хромосомы имеет большое значение для медицинской генетики, так как позволяет точно установить характер нарушений в кариотипе пациента. Постоянство числа, индивидуальность и сложность строения, авторепродукция и непрерывность в последовательных генерациях клеток говорят о большой биологической роли хромосом. Действительно хромосомы являются носителями наследственной информации (см. главу VI). Выяснено, что наследственная информация дискретна, ее составляют многочисленные гены, расположенные вдоль хромосом в линейном порядке. Каждый ген занимает постоянное, определенное место (л о к у с) в определенной хромосоме. Гомологичные хромосомы имеют один и тот же набор генетических локусов, поэтому взаимозаменяемы. Негомологичные хромосомы имеют различные наборы генетических локусов, поэтому взаимонезаменяемы. Генетическая информация, необходимая для развития организма, содержится только в полном комплекте всех негомологичных хромосом (т. е. в полном гаплоидном наборе хромосом).
|