Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


ПОЛОВОЕ РАЗМНОЖЕНИЕ




Хотя в процессе развития жизни бесполое размножение возник­ло первым, половое размножение существует на Земле уже более 3 млрд. лет. Оно обнаруживается в жизненных циклах всех основных групп организмов. Распространенность полового размножения объясняется тем, что оно обеспечивает значительное генетическое разнообразие и, следовательно, фенотипическую изменчивость потомства. Этим достигаются большие эволюционные и экологические (расселение) возможности.;

В основе полового размножения лежит половой процесс, суть которого сводится к! объединению в наследственном материале для развития; потомка генетической информации от двух разных источ­ников — родителей. Представление о половом процессе дает явле­ние конъюгации, например инфузорий. Он заключается во временном соединении двух особей с целью обмена (рекомбинаций) наследственным материалом. В результате появляются особи, гене­тически отличные от родительских организмов. В дальнейшем они осуществляют бесполое размножение. Поскольку количество инфу­зорий после конъюгации остается неизменным. У простейших половой Процесс может осуществляться в виде копуляции, которая заключа­ется в слиянии двух особей в одну, объединении и рекомбинации наследственного материала. Далее такая особь размножается - деле­нием. На определенном этапе эволюции у многоклеточных орга­низмов половой процесс как способ обмена генетической инфор­мацией между особями в пределах вида оказался связанным с размножением. -

Для участия в половом размножении"! родительских организмах вырабатываются гаметы —клетки, специализированные к обеспечению генеративной функции. Слияние материнской и отцовской гамет приводит к возникновению зиготы — клетки, представляю­щей собой дочернюю особь на первой, наиболее ранней стадии индивидуального развития.

У некоторых организмов зигота образуется в результате объединения гамет, не отличимых по строению. В таких случаях говорят об изогамии. У большинства видов по структурным и функциональ­ным признакам половые клетки делятся на материнские (яйцеклет­ки) и отцовские (сперматозоиды). Как правило, яйцеклетки и спер­матозоиды вырабатываются разными организмами — женскими (самки) и мужскими (самцы). В подразделении гамет на яйцеклетки и сперматозоиды, а особей на самок и самцов заключается явление полового диморфизма (рис. 5.1; 5.2). Наличие его в природе отражает различия в задачах, решаемых в процессе полового размножения мужской или женской гаметой, самцом или самкой. :

Образование гамет обоих видов в одном организме, имеющем и мужскую, и женскую половые железы, называют гермафродитизмомх. Гермафродитизм характерен для некоторых паразитов чело­века, например плоских червей. Несмотря на продукцию гермаф­родитами и мужских, и женских гамет, самооплодотворение для них нетипично, что связано обычно с несовпадением времени созрева­ния яйцеклеток и сперматозоидов. Истинный гермафродитизм опи­сан у человека. Чаше он развивается в результате нарушения" эмбриогенеза при одинаковом наборе половых хромосом XX ИЛИ XV во всех соматических клетках. У некоторых людей-гермафроди­тов обнаружен мозаицизм по половым хромосомам. Одни сомати­ческие клетки имеют пару XX, другие —XV.

Хотя оплодотворение представляет собой характерный признак полового размножения, дочерний организм иногда развивается из неоплодотворенной яйцеклетки. Это явление называют девствен­ным развитием ИЛИ партеногенезом. Источником наследственного материала для развития потомка в этом случае обычно служит ДНК яйцеклетки —гиногенез. Реже наблюдается андрогенез — развитие потомка из клетки с цитоплазмой ооцита и ядром сперматозоида. Ядро женской гаметы в случае андрогенеза погибает.'

Обязательный партеногенез является измененной формой по­лового размножения в эволюции некоторых видов животных. У пчел, например, он используется как механизм генотипического определения пола: женские особи (рабочие пчелы и царицы) раз­виваются из оплодотворенных яйцеклеток* а мужские (трутни) — партеногенетически.! Партеногенез включен в жизненные циклы многих паразитов Он обеспечивает рост численности особей в условиях, затрудняющих встречу партнеров противоположного по­ла. Имеются указания на возможность девственного развития у человека. В яичниках девушек, погибших при случайных обстоя­тельствах, в отсутствие предшествующего осеменения находили зародыши на ранних этапах дробления- Наблюдения завершенного эмбриогенеза с партеногенетическим развитием в отношении чело­века отсутствуют* При партеногенезе» как й при типичном половом размножении, развиваются особи с диплоидными соматическими клетками. Восстановление диплоидного набора хромосом происхо­дит обычно путем слияния ооцита и редукционного тельца во втором делении мейоза. \

У некоторых видов закономерно наблюдается полиэмбриония — бесполое размножение зародыша, возникающего путем полового размножения. Полиэмбриония, к примеру, типична для броненос­цев и заключается в разделении на стадии бластулы клеточного материала первоначально одного зародыша между 4—8 зародыша­ми, из которых развиваются полноценные особи. В результате полиэмбрионии у человека рождаются однояйцовые близнецы.

 

 

15. Кариотип и идиограмма хромосом человека. Характеристика кариотипа человека в норме.

Диплоидный набор хромосом клетки, характеризующийся их числом, величиной и формой, называется кариотипом (греч. karyon — ядро, typhe— форма). Этот термин введен в 1924 г. советским цитологом Г. А. Левитским. Нормальный кариотип человека включает 46 хромосом, или 23 пары; из них 22 пары аутосом и одна пара — половых хромосом (гетерохро­мосом).

Для изучения кариотипа человека обычно используют клетки костного мозга и культуры фибробластов или лейкоцитов периферической крови, так как эти клетки легче всего получить. При приготовлении препаратов хромо-1 сом к культуре клеток добавляют колхицин, останавливающий деление кле­ток на стадии метафазы. Затем клетки обрабатывают гипотоническим рас­твором, отделяющим хромосомы друг от друга, после чего их фиксируют и окрашивают.

Благодаря такой обработке каждая хромосома четко видна в световом микроскопе. Длина хромосом колеблется ,от 2,3 до 11 мкм. ;

Для того чтобы легче было разобраться в сложном комплексе хромосом, составляющем кариотип, их располагают в виде и д и о г р а м м ы (от греч. idios— своеобразный, gramme— запись). Составление идиограмм, как и сам термин, предложено советским цитологом С. Г. Навашиным (1857---1930). В идиограмме хромосомы располагаются попарно в порядке убывающей величины (рис. 15). Исключение делается для половых хромосом, которые выделяются особо. Наиболее крупной паре хромосом присвоен № 1, сле­дующей — № 2 и т. д. Самая маленькая пара дромосом человека № 22. Как видно на идиограмме, пару половых хромосом женщины составляют две одинаковые крупные хромосомы, названные Х-хромосомами. У мужчин одна Х-хромосома такая же, как у женщин, а 'другая"— гораздо меньшая, У-хромосома.

Идентификация хромосом только по величине встречает большие затруднения: ряд хромосом имеет сходные размеры. Однако в последнее время разработаны новые методики для анализа хромосом: использование флюоресцент­ных красителей, окрашивание хромосом после специальной обработки краской Гимзы (названной так по имени автора) и применение других красителей. , Ними методами установлена четкая дифференцировка хромосом человека по их длине на красящиеся специальными методами и не красящиеся поло­сы. Рисунок этих полос строго специфичен, индивидуален для каждой пары хромосом (рис. 16). Умение точно дифференцировать хромосомы имеет боль­шое значение для медицинской генетики, так как позволяет точно установить характер нарушений в кариотипе пациента.

Постоянство числа, индивидуальность и сложность строения, авторепродукция и непрерывность в последовательных генерациях клеток говорят о большой биологической роли хромосом. Действительно хромосомы являются носителями наследственной информации (см. главу VI).

Выяснено, что наследственная информация дискретна, ее составляют многочисленные гены, расположенные вдоль хромосом в линейном по­рядке. Каждый ген занимает постоянное, определенное место (л о к у с) в определенной хромосоме.

Гомологичные хромосомы имеют один и тот же набор генетических локусов, поэтому взаимозаменяемы. Негомологичные хромосомы имеют раз­личные наборы генетических локусов, поэтому взаимонезаменяемы. Генети­ческая информация, необходимая для развития организма, содержится толь­ко в полном комплекте всех негомологичных хромосом (т. е. в полном гапло­идном наборе хромосом).

 

 


Поделиться:

Дата добавления: 2015-08-05; просмотров: 66; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты