Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


ПОМОЩНИК ВРАЧА, ИНЖЕНЕРА, УЧЕНОГО




 

Больше сорока лет[25] прошло с той поры, как вюрцбургский профессор Вильгельм Конрад Рентген открыл невидимые лучи, заставляющие светиться платино-цианистый барий.

В наше время лучи икс – лучи Рентгена – никому больше не представляются чудом. Люди уже давно привыкли к ним. Рентгеновский снимок, показывающий нам строение наших легких, удивляет нас не более, чем телефон на столе или автомобиль, проезжающий мимо наших окон. Ученые исследовали свойства таинственных лучей, инженеры и врачи научились пользоваться лучами, применять их на практике.

Лучи икс, лучи-загадка перестали быть загадкой. Физики поняли, почему в баллоне с разреженным газом, через который проходит электрический ток, возникают невидимые лучи. Они разгадали их происхождение, их природу.

Лучи Рентгена возникают тогда, когда в стеклянную стенку баллона ударяется поток электронов, с огромной скоростью мчащихся сквозь разреженный газ.

Когда-то Герц и Крукс спорили о том, что такое электрический ток, проходящий в разреженном газе: колебания ли это, волны или материальные частицы, заряженные электричеством? Оказалось, доля истины была в предположении обоих. Современные физики полагают, что электрический ток – это и то и другое сразу: и частицы, летящие с огромной скоростью, и особого рода колебания, волны. То же можно сказать и о лучах икс. В тот самый момент, когда несущиеся сквозь газ электроны натыкаются на стеклянную стенку, в баллоне возникают новые волны-частицы. Они разбегаются по всем направлениям от стеклянной стенки, о которую ударились электроны. Волны-частицы, испускаемые стенкой, – это и есть лучи икс, открытые профессором Рентгеном.

И не только стекло, поставленное на пути электронов, испускает невидимые лучи. Сам Рентген, производя свои опыты, заметил, что если на пути электронов поставить металл, то и металл начнет испускать лучи – и даже еще сильнее, чем стекло. Позже было установлено, что, с каким бы твердым телом не столкнулись быстрые электроны, оно делается источником рентгеновских лучей.

В современных рентгеновских трубках лучи икс получаются от удара электронов об антикатод – массивный кусок тугоплавкого металла (железа или вольфрама). В трубку подают высокое электрическое напряжение. Чем выше напряжение, тем быстрее движутся электроны, тем энергичнее оказываются лучи Рентгена, испускаемые антикатодом, и тем легче проходят эти лучи сквозь тела, непроницаемые для видимого света.

В наше время научились изготовлять мощные трубки, рассчитанные на электрическое напряжение в шестьсот – семьсот тысяч вольт. Электротехнические заводы давно уже наладили массовое производство рентгеновских трубок и рентгеновских аппаратов. Спрос на них растет с каждым годом.

Какое же применение в жизни нашли себе невидимые лучи, которые открыл скромный вюрцбургский профессор, гениальный немецкий физик Вильгельм Конрад Рентген?

Больше всего они пригодились медицине. Вооружившись лучами Рентгена, врач фотографирует кости в живом человеческом теле, изучает явления, происходящие в легких, в желудке, в сердце. Дело в том, что для лучей Рентгена кости не так прозрачны, как мускулы или железы. Потому и проступают темные очертания костей на фотографическом снимке, сделанном рентгеновскими лучами. А легкие отчетливо видны на снимке потому, что они прозрачнее чем железы или мышцы. Но только изображения легких получаются не темные, а светлые.

Ну а как желудок? Ведь он прозрачен для лучей Рентгена не больше и не меньше, чем все другие органы, находящиеся в брюшной полости человека. Как же возможно фотографировать желудок?

Немецкий ученый Ридер нашел выход из этого затруднения. Пациенту предлагают съесть тарелку каши. Но каша это не простая, а особенная: в ней содержится сернокислый барий. Сернокислый барий менее прозрачен для рентгеновских лучей, чем внутренние органы и мускульные ткани человеческого тела. К тому же он совершенно безвреден: каша с сернокислым барием не очень-то вкусна, но ее можно безо всякой опасности для здоровья съесть сколько угодно. Как только желудок пациента наполнится сернокислым барием – врач немедленно делает рентгеновский снимок. И тогда темные очертания желудка отчетливо возникают на фоне окружающих тканей.

Сбылось все то, о чем сорок лет назад старый редактор Лехер писал в своей газете. Современные врачи уже и представить себе не могут, как это прежняя медицина обходилась без рентгеновских лучей. Заболел ли кто туберкулезом легких, расширением сердца или язвой желудка, ранен ли кто пулей, – врачи просвечивают больного лучами Рентгена, фотографируют пораженные органы тела. Взглянув на фотографический снимок, врач ясно видит, что творится в теле больного, распознает скрытую болезнь.

Но мало того, что лучи Рентгена часто помогают определить болезнь: некоторые тяжелые болезни они и вылечивают.

Так, рентгеновская трубка оказалась в одно и то же время фонарем, освещающим внутренности живого тела, и сосудом, содержащим драгоценное лекарство. Правда, пользоваться этим лекарством следует с большим искусством: разрушая пораженные болезнью ткани, рентгеновские лучи могут нанести ущерб здоровым.

Ну а неживое вещество? Способны ли лучи Рентгена проникать в неживые вещества и обнаруживать в них то, что скрыто от человеческих глаз?

Вот в литейном цехе отлили какую-нибудь деталь. На вид она хороша – казалось бы, лучше и не надо. А какова она внутри? Не попал ли в литье пузырек воздуха, нет ли в глубине металла трещинки, которая при малейшей перегрузке машины выведет деталь из строя?

На помощь инженеру приходят рентгеновские лучи.

При первых опытах Рентгена невидимые лучи проникали только сквозь тонкие слои металла, а в толстых застревали, поглощались. Современные рентгеновские трубки с напряжением в сотни тысяч вольт испускают лучи гораздо более мощные, гораздо глубже «проникающие». Такие лучи легко проходят через слой стали толщиной в десять – пятнадцать сантиметров. От них не скроется ни одна трещинка, ни один пузырек.

Рентгеновский снимок сразу выводит на чистую воду малейший изъян внутри металла.

Зоркие лучи Рентгена несут ответственную службу на заводах. Но еще более тонкую и сложную работу проделывают они в физических лабораториях. Они помогают физикам изучать строение вещества.

В 1912 году немецкие физики Лауэ, Фридрих и Книппинг сделали такой опыт. Они пропустили пучок рентгеновских лучей через кристаллик сернистого цинка. Пройдя сквозь кристаллик, лучи упали на фотографическую пластинку. Когда ученые проявили и отфиксировали пластинку, оказалось, что на ней отпечатался какой-то замысловатый узор, составленный из маленьких темных пятнышек.

Что за узор, откуда он? Лауэ сумел ответить на этот вопрос. Кристалл сернистого цинка состоит из атомов двух веществ: серы и цинка. Эти атомы расположены в пространстве стройными правильными рядами. Внутри кристалла, параллельно каждой его грани, идут, пересекаясь между собой, бесчисленные плоскости. Каждая из этих плоскостей – это геометрически правильная сетка, составленная из атомов.

Лучи Рентгена, проникая сквозь сетку, огибают атомы и рисуют узор на фотографической пластинке. Узор из темных пятнышек. Это не фотография кристалла. Но изучая этот узор, Лауэ с помощью математического расчета установил, как, в каком порядке расположены в кристалле атомы.

Лауэ и его сотрудники стали пропускать лучи Рентгена и через другие кристаллы – поваренную соль, берилл, сернокислый никель. И каждый раз на фотографической пластинке отпечатывался узор из темных точек. Поваренная соль давала один узор, берилл – другой, сернокислый никель – третий.

Значит, во всех этих веществах атомы расположены сетками в своем, строго определенном порядке. Порядок этот у разных веществ разный: у сернистого цинка – один, у поваренной соли – другой, у берилла, у алмаза, у никеля, у графита – третий, четвертый, пятый. Атомы натрия и хлора в поваренной соли расположены кубами, атомы углерода в алмазе – четырехгранными пирамидами.

Сами атомы – это чрезвычайно мелкие частицы вещества. Размеры атома – десятимиллионная доля миллиметра. Их невозможно разглядеть даже в сверхсильный микроскоп. Но с помощью лучей, открытых Рентгеном, физики узнали с абсолютной достоверностью, как расположены атомы в кристаллах. В каком порядке и даже – какое между ними расстояние. В 1913 году, через год после открытия Лауэ, русский физик Ю. Вульф и англичане, отец и сын Брэгги, один в России, а двое других в Англии, нашли – совершенно независимо друг от друга – способ с полной математической точностью определять в кристаллах расстояние между атомами. Оказалось,

определять его можно, направляя на кристалл под разными углами рентгеновские лучи и каждый раз измеряя при этом угол наклона.

Если бы сорок лет назад вы спросили любого ученого-физика, возможно ли разглядеть, как расположены атомы в каком-нибудь теле, он ответил бы вам: «Невозможно и никогда не будет возможно».

Открытие Рентгена еще раз доказало людям, что слово «невозможно» не имеет право существовать.

 


Поделиться:

Дата добавления: 2015-09-13; просмотров: 102; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты